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Development of predictive maintenance systems for drilling equipment based on Al

The oil and gas industry relies heavily on drilling equipment operating under extreme conditions,
where unexpected failures result in significant downtime, high maintenance costs, and safety risks.
Traditional reactive and preventive maintenance approaches often fail to anticipate failures, leading to
inefficiencies and increased operational expenses. This study presents the development and
implementation of an Al-based predictive maintenance system designed to enhance the reliability of
drilling equipment, reduce downtime, and optimize maintenance schedules. The system integrates
machine learning algorithms, including Random Forest, Long Short-Term Memory (LSTM), and
Multilayer Perceptron, with real-time data from loT-enabled sensors monitoring parameters such as
vibration, temperature, pressure, and wear. Historical maintenance logs and operational parameters
are also incorporated to train models for failure prediction and remaining useful life (RUL) estimation.
Data preprocessing addresses challenges like missing values and noise, while feature engineering
extracts key predictors, such as anomaly detection metrics (e.g., Mahalanobis distance) and
degradation trends. The system architecture supports real-time data acquisition, processing, and user-
friendly visualization through a web-based interface, enabling maintenance teams to act on predictive
alerts. A six-month pilot test on operational drilling rigs demonstrated a 35 % reduction in downtime
(from 120 to 78 hours per month) and a 28 % decrease in maintenance costs (from $50,000 to
$36,000 per month) compared to reactive maintenance. The LSTM model achieved the highest
performance, with an F1-score of 0,92 for failure prediction and a mean absolute error of 10,8 hours
for RUL estimation. Case studies highlighted successful predictions, such as a pump failure averted
48 hours in advance, saving 10 hours of downtime and $15,000 in repairs. Challenges include data
quality issues, model interpretability, and integration with existing workflows. Compared to existing
predictive maintenance systems, this approach offers superior accuracy but relies on high-quality
sensor data. Future work includes incorporating edge computing for real-time processing, expanding to
other equipment types, and enhancing model robustness with larger datasets and advanced algorithms
like transformers. This system demonstrates the transformative potential of Al-driven predictive
maintenance, offering significant cost savings, enhanced safety, and improved operational efficiency for
the oil and gas industry.

Keywords: predictive maintenance; artificial intelligence; machine learning; drilling equipment; oil
and gas industry; loT sensors; failure prediction; remaining useful life; downtime reduction; cost
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Introduction. Drilling equipment forms the backbone of operations in the oil and gas industry, enabling the
extraction of hydrocarbons from challenging subsurface environments [1]. These complex systems, including
drill bits, pumps, and motors, operate under extreme conditions, such as high pressures, temperatures, and
mechanical stresses [2, 3]. Ensuring their reliability is paramount to maintaining operational efficiency,
minimizing downtime, and safeguarding personnel and environmental safety. Effective maintenance strategies
are critical to achieving these goals, as equipment failures can lead to costly interruptions, safety hazards, and
reduced productivity. Traditional maintenance approaches, such as reactive maintenance — where repairs are
performed only after failures occur — often result in significant downtime and high repair costs. Similarly,
preventive maintenance, which relies on scheduled interventions regardless of equipment condition, can lead to
unnecessary maintenance activities, increasing operational costs and resource waste [4]. These limitations
highlight the need for a more advanced approach to equipment management.

The primary challenge addressed in this study is the high downtime and maintenance costs caused by
unexpected failures of drilling equipment. Unplanned outages disrupt drilling operations, delay project timelines,
and incur substantial financial losses, often exacerbated by the remote and harsh environments in which drilling
rigs operate [5]. Moreover, traditional maintenance strategies lack the ability to anticipate failures before they
occur, relying instead on historical averages or manual inspections that may not detect subtle signs of impending
issues. This gap in predictive capability results in inefficiencies and missed opportunities to optimize equipment
performance.
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The objective of this research is to develop an Al-based predictive maintenance system tailored for drilling
equipment to enhance reliability, reduce downtime, and optimize maintenance schedules [6]. By leveraging
artificial intelligence, the system aims to predict potential equipment failures before they occur, enabling
proactive interventions that minimize disruptions and extend equipment lifespan [7]. This approach shifts the
maintenance paradigm from reactive and preventive to predictive, using data-driven insights to inform decision-
making.

The scope of this study focuses on the integration of Al techniques, specifically machine learning and data
analytics, to enable real-time monitoring and failure prediction for drilling equipment [8, 9]. Machine learning
algorithms will be employed to analyze data from equipment sensors, identifying patterns and anomalies
indicative of potential failures. Data analytics will facilitate the processing of large volumes of operational data,
providing actionable insights for maintenance planning [10]. The system will incorporate real-time monitoring
capabilities to ensure timely detection of issues, enabling maintenance teams to act swiftly and effectively.

The significance of this research lies in its potential to transform maintenance practices in the oil and gas
industry. By implementing an Al-based predictive maintenance system, drilling operations can achieve improved
operational efficiency through reduced downtime and optimized resource allocation. Cost savings are expected
from fewer emergency repairs, lower maintenance expenses, and extended equipment lifecycles. Additionally,
predictive maintenance enhances safety by minimizing the risk of catastrophic equipment failures that could
endanger personnel or the environment. This approach aligns with the industry's broader goals of adopting
advanced technologies to improve performance and sustainability, positioning Al-driven predictive maintenance
as a critical tool for advancing operational standards in drilling operations.

Obijective. To consider the development and implementation of a predictive maintenance system based on
artificial intelligence to improve the reliability of drilling equipment, reduce downtime and reduce maintenance
costs in the oil and gas industry by using machine learning algorithms and 10T sensor data.

Methods. The methodology for developing an Al-based predictive maintenance system for drilling
equipment involves a systematic approach to data collection, preprocessing, model development, system
architecture design, and validation. Each component is designed to ensure robust, accurate, and practical
predictions of equipment failures, enabling proactive maintenance in oil and gas drilling operations.

Historical and real-time data are gathered from drilling equipment sensors monitoring parameters such as
vibration, temperature, pressure, and wear indicators [11]. Vibration data, for example, is collected using
accelerometers to detect mechanical imbalances or misalignments, while temperature sensors monitor
overheating risks in motors and pumps [12, 13]. Pressure sensors track hydraulic system performance, and wear
indicators assess component degradation. Maintenance logs provide records of past repairs, scheduled
maintenance, and failure events, while operational parameters, such as drilling speed and torque, contextualize
equipment performance [14, 15]. Data is sourced from multiple rigs to ensure diversity and representativeness,
capturing variations in equipment types, operating conditions, and failure modes (fig. 1).
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Fig. 1. Data collection workflow for predictive maintenance

Data preprocessing addresses challenges such as missing values, noise, and inconsistencies. Missing values
are handled using interpolation for time-series data or imputation based on median values for non-sequential
data [16]. Noise is reduced through filtering techniques, such as moving average smoothing for vibration signals.
Normalization scales data to a standard range (e.g., [0,1]) to ensure compatibility with machine learning
algorithms. Feature engineering extracts key predictors of equipment failure, such as anomaly detection metrics
(e.g., Mahalanobis distance for multivariate outliers) and performance degradation trends (e.g., exponential
moving averages of temperature increases). For instance, the Mahalanobis distance is calculated as:

Du () =y (x - )T S (x ), (1)
where X is the observation vector, x is the mean vector, and S is the covariance matrix.
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This metric identifies anomalies by measuring the distance of a data point from the multivariate mean,
adjusted for correlations.

Machine learning algorithms are selected based on their suitability for predictive maintenance tasks.
Random Forest is employed for its robustness in handling high-dimensional data and capturing non-linear
relationships. Long Short-Term Memory (LSTM) networks are used for time-series analysis, leveraging their
ability to model temporal dependencies in sensor data [17]. Neural networks, such as multilayer perceptrons, are
explored for complex pattern recognition. Models are trained to detect patterns associated with equipment
failures, such as sudden spikes in vibration or gradual increases in temperature, and to predict the remaining
useful life (RUL) of components. RUL is estimated using regression models, where:

RUL = f(X:9), (2
where X represents input features (e.g., sensor readings, operational parameters), and 9 denotes model
parameters.

Hybrid models combine supervised learning (e.g., labeled failure data) with unsupervised learning
(e.g., clustering for anomaly detection) to improve accuracy in scenarios with limited labeled data (fig. 2).
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Fig. 2. Al model development process for failure prediction

The system architecture integrates real-time data acquisition, processing, and prediction. loT-enabled
sensors continuously collect data, transmitting it to a central processing unit via secure protocols. A cloud-based
or edge-computing platform processes the data using trained Al models, generating predictions and alerts [18].
The architecture includes a user interface, developed as a web or mobile application, allowing maintenance
personnel to access real-time predictions, visualize equipment health, and receive prioritized alerts for potential
failures. The system is designed for scalability, supporting multiple rigs and equipment types (fig. 3).
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Fig. 3. System architecture for real-time predictive maintenance

Validation involves testing the system on a dataset from operational drilling rigs, ensuring real-world
applicability. Cross-validation (e.g., k-fold) assesses model performance, using metrics such as precision, recall,
F1-score, and mean absolute error for RUL predictions [19]. A pilot test in a real-world drilling environment
evaluates practical feasibility, measuring metrics like downtime reduction and maintenance cost savings.
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Feedback from maintenance teams is incorporated to refine the user interface and alert system, ensuring
alignment with operational needs.

Results and discussion. The results of the Al-based predictive maintenance system for drilling equipment
demonstrate its effectiveness in enhancing operational reliability, reducing downtime, and optimizing
maintenance processes. The system's performance is evaluated through quantitative metrics, comparative
analyses, and real-world case studies, followed by a discussion of its implications, challenges, and potential
improvements.

Model performance is assessed using key metrics for failure prediction and remaining useful life estimation.
Three machine learning models — Random Forest, Long Short-Term Memory, and Multilayer Perceptron
(MLP) — were trained and tested on a dataset from operational drilling rigs, comprising 10,000 sensor readings
and 500 failure events. The table below summarizes the performance metrics for failure prediction, including
precision, recall, and F1-score (tab. 1), calculated as:

Precision:
TP
I 3
TP + FP @)
Recall:
TP
L — 4
TP + FN (4)
F1-score:
5. Pret?lsilon - Recall ' (5)
Precision + Recall
Table 1
Performance metrics of Al models for failure prediction and RUL estimation
Model Precision Recall F1-Score MAE (RUL, hours)
Random Forest 0,92 0,89 0,90 12,5
LSTM 0,94 0,91 0,92 10,8
MLP 0,90 0,87 0,88 14,2

The LSTM model achieved the highest F1-score (0,92) and the lowest mean absolute error (MAE) for RUL
. 1 N g . . . -
predictions ( MAE ZHZin:lh/i - yi|), indicating superior performance in capturing temporal dependencies in

sensor data. Random Forest performed well in handling high-dimensional data, while MLP showed slightly
lower accuracy due to sensitivity to feature scaling. Figure 4 shows a bar plot comparing the F1-scores of the
models:
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Fig. 4. F1-score comparison of predictive maintenance models
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The Al-based system was compared to traditional reactive and preventive maintenance approaches using
data from a six-month pilot test on two drilling rigs. The system reduced downtime by 35 % (from 120 hours to
78 hours per month) and maintenance costs by 28 % (from 50,000 to 36,000 per month) compared to reactive
maintenance. Preventive maintenance, while more efficient than reactive, still incurred 15 % higher downtime
(90 hours per month) and 10 % higher costs ($44,000 per month) than the Al-based approach. Table 2 below
summarizes these outcomes:

Table 2
Comparison of maintenance approaches by downtime and cost
Approach avg. downtime (hours/month) Avg. maintenance cost ($/month)
Reactive Maintenance 120 50,000
Preventive Maintenance 90 44,000
Al-Based Predictive 78 36,000

Downtime reduction shows on figure 5.
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Fig. 5. Downtime reduction by maintenance approach

Case studies from the pilot test highlight the system's practical impact. In one instance, the LSTM model
predicted a pump failure 48 hours in advance based on anomalous vibration patterns, allowing maintenance
teams to replace a worn bearing during scheduled downtime, avoiding an estimated 10-hour outage and
$15,000 in repair costs. In another case, the system identified gradual pressure drops in a hydraulic system,
enabling proactive recalibration that prevented a catastrophic failure. These cases demonstrate the system's
ability to provide actionable insights, reducing unplanned outages and enhancing operational continuity.

The effectiveness of the Al models varies by task. LSTM excels in time-series prediction due to its ability to
model sequential dependencies, making it ideal for RUL estimation. Random Forest is robust for feature-rich
datasets but less effective for temporal data. MLP, while versatile, requires careful tuning to avoid overfitting.
The system's impact on operational efficiency is evident in the reduced downtime and costs, while safety is
enhanced by minimizing risks of sudden failures, such as pump explosions or drill bit fractures, which could
endanger personnel.

Challenges include data quality issues, such as sensor noise or incomplete maintenance logs, which can
degrade model accuracy. For example, 10 % of the dataset had missing values, requiring imputation that
introduced minor errors. Model interpretability remains a concern, as complex models like LSTM are less
transparent to maintenance teams, necessitating simplified visualizations in the user interface. Integration with
existing workflows posed logistical challenges, as some rigs required hardware upgrades to support 10T sensors.
Compared to literature, the system outperforms existing predictive maintenance models, which report F1-scores
of 0,85-0,89, but relies more heavily on real-time sensor data, unlike some models that use simulated data.

Limitations include dependency on high-quality sensor data, which may not be available in older rigs, and
high computational requirements for real-time processing, necessitating cloud or edge infrastructure. Potential
improvements include incorporating environmental factors (e.g., ambient temperature, humidity) as additional
features, adopting advanced algorithms like transformer-based models for better sequence modeling, and
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implementing edge computing to reduce latency. Figure 6 demonstrates a visualization of RUL predictions over
time for a single component:
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Fig. 6. Actual vs. predicted remaining useful life over time

Figure 7 visualize of SHAP (SHapley Additive exPlanations) values for feature importance in failure
prediction:
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Fig. 7. Feature importance for failure prediction using SHAP Values

These results and analyses underscore the transformative potential of Al-based predictive maintenance,
addressing key operational challenges while identifying areas for further refinement to maximize its impact in
drilling operations.

Conclusions. The development and implementation of an Al-based predictive maintenance system for
drilling equipment have demonstrated significant advancements in addressing the operational challenges faced
by the oil and gas industry. The system leverages machine learning algorithms, real-time sensor data, and 10T-
enabled monitoring to predict equipment failures and estimate remaining useful life with high accuracy. During a
six-month pilot test on operational drilling rigs, the system achieved a 35 % reduction in downtime (from 120 to
78 hours per month) and a 28 % decrease in maintenance costs (from 50,000 to 36,000 per month) compared to
reactive maintenance approaches. The Long Short-Term Memory model outperformed other algorithms,
achieving an F1-score of 0,92 for failure prediction and a mean absolute error of 10,8 hours for RUL estimation.
These results were supported by case studies, such as the prediction of a pump failure 48 hours in advance,
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which prevented a 10-hour outage and saved $15,000 in repair costs. The system's ability to provide actionable
insights through real-time alerts and a user-friendly interface has proven its effectiveness in enhancing
equipment reliability, minimizing unplanned outages, and optimizing maintenance schedules.

The implications of this system for the oil and gas industry are profound. By shifting from reactive and
preventive maintenance to a predictive approach, the system delivers substantial cost savings through reduced
downtime and fewer emergency repairs. For instance, the 28 % reduction in maintenance costs translates to
significant financial benefits for large-scale drilling operations, where monthly expenses can exceed hundreds of
thousands of dollars. Enhanced safety is another critical benefit, as the system minimizes the risk of catastrophic
failures, such as pump explosions or drill bit fractures, which could endanger personnel or lead to environmental
incidents. The optimized maintenance schedules enabled by accurate RUL predictions allow for better resource
allocation, reducing unnecessary interventions and extending equipment lifespan. These improvements align
with the industry's goals of increasing operational efficiency and adopting sustainable practices, positioning the
Al-based system as a valuable tool for modernizing drilling operations.

Future research and development can further enhance the system's capabilities. One key area is the
incorporation of edge computing to enable real-time data processing directly at the rig site, reducing latency and
dependency on cloud infrastructure. This would be particularly beneficial for remote drilling locations with
limited connectivity, where delays in data transmission could hinder timely predictions. Expanding the system to
other types of equipment, such as compressors or pipelines, would broaden its applicability across the oil and gas
sector. Improving model robustness through larger and more diverse datasets is another priority, as the current
system relies on high-quality sensor data, which may not be available in older rigs. For example, integrating
environmental factors, such as ambient temperature or humidity, could enhance prediction accuracy by
accounting for external influences on equipment performance. Advanced algorithms, such as transformer-based
models, could be explored to improve sequence modeling and capture more complex patterns in sensor data.
Additionally, enhancing model interpretability through techniques like SHAP values could make predictions
more transparent to maintenance teams, facilitating trust and adoption.

These recommendations aim to address current limitations, such as dependency on high-quality data and
computational resources, while expanding the system's scope and usability. The transformative potential of Al-
driven predictive maintenance lies in its ability to revolutionize maintenance practices in drilling operations.
By providing precise, data-driven insights, the system not only improves operational efficiency and safety but
also sets a new standard for technology adoption in the oil and gas industry. As the sector continues to embrace
digitalization, Al-based predictive maintenance offers a scalable and adaptable solution to meet the demands of
increasingly complex and high-stakes drilling environments, paving the way for smarter, safer, and more cost-
effective operations.
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IMamenko O.A., Pacuseraes B.O., SIBopcska B.B., Illymos A.C., 3udanos /1.C.
Po3po0ka cucTeM NPOrHO3HOI0 TEXHIYHOI0 00CIYTOBYBAHHS OYPOBOI0 00/1aJHAHHSA HA OCHOBI LITY4YHOI0 iHTEIEKTY

HadTorazosa mpomMucioBicTs 3HAYHOIO MIpPOIO 3AJICKUTH BiJl OypOBOro OOJIafHAHHS, AKE IPAIIO€ B €KCTPEMaTbHUX
yYMOBax, i HeCIo[iBaHi 3001 IPU3BOIATH JI0 3HAYHHUX IIPOCTOIB, BUCOKHX BHTPAT HA TEXHIYHE OOCIYTOBYBaHHS Ta PU3UKIB
qutst 6esrrexu. TpaanmiiiHi peakTUBHI Ta IPEBEHTUBHI IIIXOAN JI0 TEXHITHOTO 0OCIyTrOBYBaHHS 4acTO HE 3/IaTHI Iepe0aunTi
3001, 10 MPHU3BOIUTH IO HEe(EKTHBHOCTI Ta 3POCTAHHS EKCIUTyaTalliifHUX BUTpAT. Y IBOMY JOCIIDKEHHI MpEICTaBICHO
pO3poOKy Ta BHPOBA/PKEHHS CHUCTEMH IIPOTHO3HOTO TEXHIYHOTO OOCIYyroByBaHHS Ha OCHOBI INTYYHOTO IHTEJEKTY,
MpPU3HAUEHOI JUIA MiABUINEHHA HaXiiiHOCTI OypoBOro oOJagHAaHHS, CKOPOYEHHS MPOCTOIB Ta onTuMizamii rpadikis
TeXHIYHOro 0O0cimyroByBaHHsA. CHcTeMa IHTETpye alrOpUTMH MAIIMHHOTO HaBYaHHsS, 30kpemMa Random Forest, mosry
KOpoTKOCTpoKoBY mam’ats (LSTM) i Gararomaposuii nepuentporn (MLP), 3 nanumu B peansHoMy uaci Bif loT-garuumkis,
IO BiACTEXKYIOTh MMapaMeTpH, Taki SK BiOpauis, TeMneparypa, TUCK 1 3HOC. [cTopuyHi )KypHaIl TEXHIYHOTO 00CIyrOByBaHHS
Ta eKCIUTyaTallifHi IapaMeTpH TaKOXX BHKOPHCTOBYIOTHCS IS HABUaHHS Mojelied NMpOTHO3yBaHHS 3001B 1 OIHKK
3ayumkoBoro tepMiHy ciyx6u (RUL). ITomepenust oOpoOka maHuMX BUpimrye Taki IMpoOiaeMH, sSIK IPOMYyIIeHI 3HaYeHHS Ta
IIyM, a IEMKEHepis O3HaK BHIUILE KIIOYOBI NPEIMKTOPH, TaKi SIK METPUKM BUSBICHHS aHOMANiH (HaNpHKIaJ, BiICTaHb
MaxanaHoOica) Ta TeHAEHIII Aerpamaiii. ApXiTekTypa cucTeMu HiaTpuMye 30ip TaHWX y peadbHOMY daci, ix oOpoOKy Ta
3py4Hy Bi3yai3ailiro uepe3 BeOiHTepdeiic, Mo 103B0sE KOMaHaM 3 TEXHIYHOTO OOCIYTOBYBaHHS pearyBaTH Ha MPOTHO3HI
crnoBimeHHA. lllecTumicayHe MIOTHE TECTYBaHHS Ha OiF0UYMX OYpOBHX YCTaHOBKAX IOKa3aj0 CKOPOUYECHHS NpocToiB Ha 35 %
(31 120 no 78 romuH Ha MicsIb) i 3MEHIICHHS BUTPAT Ha TeXHi4He 00ciyroByBanHsa Ha 28 % (3 50 000 xo 36 000 nonapis Ha
MiCsIIIb) TOPIBHSAHO 3 peakTUBHUM obOciyroByBaHHAM. Mozens LSTM moxa3zana HaiiBunty edektuBHicTs 3 F1-moka3sHukoM
0,92 s mporHo3yBaHHSA 3001B i cepeaHbOr0 abcomoTHOW moxuoOkoro 10,8 roguman mis ominku RUL. Keiic-crani nokazamu
YCHIIIHI IPOTHO3H, HAIIPUKIIAJ, 3alI00iraHHs 30010 Hacoca 3a 48 rouH, o JO3BOJIWIO YHUKHYTH 10-roIMHHOTO MPOCTOIO T
3aomaauta 15 000 monapiB Ha peMOHTI. BUKJIMKH BKJIIOYAIOTH MPOOJIEMH 3 SKICTIO JaHUX, IHTEPIPETOBAHICTh MOJEINCH i
iHTerpariro 3 iCHyloYnMH podounmu nponecamu. [TOpiBHSIHO 3 HAassBHHUMH CHCTEMaMH IPOTHO3HOTO OOCIYyroBYBaHHS Iieit
miaxin 3a0e3nedye BUINY TOYHICTh, aie 3AICKUTh BiJ SIKICHHX JaHUX 13 JaT4ukiB. MalOyTHI poOOTH BKIIOYAIOThH
BIIPOBA/DKCHHS NepudepiitHux o04ncieHsb Uil 00poOKH AaHHX Yy peallbHOMY 4Yaci, PO3LIMPEHHS CHCTEMH Ha iHIII THIN
oOagHaHHA Ta MiABUIIEHHA CTIMKOCTI MOAENeH 3a JOIOMOTOI0 OUIBIINX HAOOPIB AaHUX 1 HEPEeIOBUX aITOPUTMIB, TAKHX SK
TpaHcpopmepu. Llg cucrema nemoHCTpye TpaHchopMaumifHHK MOTEHIad MPOTHO3HOTO TEXHIYHOTO OOCIYTOBYBaHHS Ha
OCHOBI IITYYHOTO iHTEJNEKTY, IPOMOHYIOYHN 3HAYHY C€KOHOMIIO BUTpAT, MiIBUINEHHS OC3MEKH Ta MOKpAIIEHHS OIepaliifHol
e(eKTHBHOCTI JUTs Ha(QTOra30Bo1 MPOMHUCIOBOCTI.
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