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Аналіз впливу основних параметрів залізорудної сировини на процес тонкого 

грохочення з використанням математичних моделей 
 

Процес тонкого грохочення, у чорній металургії України та світу, має велике значення та є 

одним з ключових етапів удосконалення технологій збагачення, що безпосередньо визначає 

ефективність розподілу заліза за класами крупності. Метою статті є визначення основних 

параметрів залізорудної сировини та встановлення їх впливу на процес тонкого грохочення із 

застосуванням методів математичного моделювання. Процес тонкого грохочення розглядається 

як складний стохастичний об’єкт, поведінка якого зумовлена наявністю численних випадкових 

факторів. Для розв’язання поставленої задачі використано методи теорії ймовірностей та 

математичної статистики, що дозволило формалізувати стохастичність вхідного потоку 

рудної шихти через задання його щільності розподілу та оцінити фракційний склад потоку. У ході 

дослідження отримано формули для розрахунку сепараційної характеристики підрешітного 

продукту тонкого грохочення з урахуванням параметрів вхідної сировини та режимів процесу. 

Використання моделі О.М. Тихонова забезпечило можливість опису щільності розподілу 

підрешіткової сепараційної характеристики як випадкової величини, що залежить як від 

характеристик вхідного випадкового потоку, так і від властивостей самого процесу. Проведене 

імітаційне моделювання з використанням розподілу RRSB, що підтвердило адекватність 

математичного опису та засвідчило перспективність застосування запропонованого підходу для 

практичних задач збагачення магнетитових кварцитів. На основі результатів сформульовано 

напрями подальших досліджень, зокрема: необхідність розширення математичної моделі шляхом 

введення додаткових параметрів (щільність твердого, щільність пульпи тощо), проведення 

експериментальних досліджень для формування статистичної бази та перевірки адекватності 

моделі на практиці. Отримані результати створюють підґрунтя для підвищення ефективності 

процесів тонкого грохочення та вдосконалення технологій збагачення залізорудної сировини. 

Ключові слова: продуктивність грохоту; ефективність грохочення; крупність частинок; 

сепараційна характеристика; математична модель; ймовірність просіювання; щільність 

розподілу; інтегральна функція; математичне очікування; дисперсія; середньоквадратичне 

відхилення. 

 

Актуальність теми. У чорній металургії, як України, так і інших країн світу, спостерігається стійка 

тенденція до нарощування обсягів видобутку та переробки магнетитових кварцитів. При цьому 

характерним є зменшення вмісту заліза у вихідній сировині поряд із підвищенням вимог до якісних 

характеристик залізорудних концентратів. Аналіз існуючих технологій збагачення магнетитових 

кварцитів та розподілення заліза за класами крупності у залізорудній сировині гірничо-збагачувальних 

комбінатів свідчать, що ключове значення для отримання конкурентоспроможної сировини має процес 

тонкого грохочення. Його використання розглядається як один із найбільш перспективних напрямів 

удосконалення технологій збагачення магнетитових кварцитів, з яким значною мірою пов’язують 

подальший розвиток галузі [1]. 

Аналіз останніх досліджень та публікацій, на які спираються автори. Висвітленню процесу 

тонкого грохочення та його математичному моделюванню присвячено багато видань та публікацій 

зокрема технології тонкого грохочення та її аспектам Є.Є. Андрєєв [1], І.А. Бегагоєна [2], В.О. Смирнова 

[3, 10], Л.А. Вайсберга [4], A.M. Годена [5] та ін. Важливість та доцільність застосування математичного 

моделювання у процесах збагачення корисних копалин детально описана в роботах таких авторів, як 

В.Ф. Зайцева [11], В.С. Мороз [12], О.А. Медведєва [13], А.Д. Тевяшев [15], М.В. Карташов [17], 

Н.А. Ружевич [18]. 

Метою статті є визначення основних параметрів залізорудної сировини та їх впливу на процес тонкого 

грохочення з використанням математичного моделювання. 

Викладення основного матеріалу. Підвищення якості магнетитових кварцитів сприяє зниженню 

собівартості металургійного переділу. При цьому якість залізорудного концентрату визначається не лише 

його масовою часткою заліза, а й вмістом шкідливих та шлакоутворюючих домішок. Одним із ключових 

параметрів, що впливають на вартість концентрату, є рівень вмісту кремнезему: його підвищена 

концентрація зумовлює додаткові витрати на подальших стадіях виробництва через необхідність введення 

вапняку для регулювання модуля основності під час огрудкування, а також знижує продуктивність 
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доменних печей, що в кінцевому результаті негативно позначається на ціні концентрату. Сучасне тонке 

вібраційне грохочення є відносно новим технологічним процесом, який ще недостатньо досліджений і 

описаний. У зв’язку з цим його доцільно розглядати як самостійний метод у системі збагачувальних 

технологій, з урахуванням єдиних методологічних, теоретичних та технологічних засад. Водночас 

специфіка перебігу процесу тонкого грохочення при збагаченні магнетитових кварцитів зумовлює 

необхідність застосування математичного моделювання для його вивчення та оптимізації [2].  

Розроблення математичної моделі процесу тонкого грохочення при збагаченні магнетитових кварцитів 

має на меті обґрунтування оптимальних технологічних параметрів цього процесу [3]. Лише за допомогою 

моделювання можливо науково визначити та уточнити параметри тонкого грохочення, тоді як за його 

відсутності таке обґрунтування може здійснюватися лише методом спроб і помилок. Подібний підхід є 

неприйнятним під час дослідження складних об’єктів, оскільки вимагає значних затрат часу та передбачає 

додаткове навантаження на сам об’єкт. Під математичною моделлю процесу тонкого грохочення доцільно 

розуміти залежність, що встановлює зв’язок між його станом і вхідними параметрами – як керованими, 

так і некерованими. У загальному вигляді модель становить собою алгоритм, який дозволяє, на основі 

інформації про вхідні фактори, визначати вихідні характеристики без необхідності безпосереднього 

відтворення реального процесу. 

Процес побудови моделі відбувається поетапно. Спочатку проводиться структурний синтез моделі. 

На цьому етапі визначається вид залежності виходу від вхідних змінних без урахування величин 

параметрів. 

При моделюванні процесу тонкого грохочення структурний синтез спирається на відомі закони 

тонкого грохочення. Механічні властивості магнетитових кварцитів через їх неоднозначність неможливо 

використовувати для отримання строгих розрахункових рівнянь, які визначають процес тонкого 

грохочення. Тому існуюча практика базується на співвідношеннях, що є узагальненням великого 

емпіричного досвіду, представленого як закони тонкого грохочення [4].  

Під законом тонкого грохочення розуміється основна формула ймовірності просіювання частинок 

через сито за формулою A.M. Годена [5] 

=
⋅
1−𝑑𝑎𝜓, (частки од.) 

(1) 

де 𝜑 – живий переріз сита, частки од.; 
𝑑 – розмір частинки, мм;  

𝑎 – розмір отвору сита, мм;  

𝜓 – коефіцієнт, 𝜓 = 1 для щілинних отворів сита, 𝜓 = 2 для квадратних отворів сита. 

Імовірність просіювання залежить від різниці (𝑎 − 𝑑) та нормована щодо 𝑎. Годен A.M. отримав цю 

формулу для умови падіння одиночної частки на сито без урахування впливу інших частинок та за умови, 

що частка не вдариться об дріт сита. Простота формули (1) визначила її використання у багатьох відомих 

моделях процесу грохочення. 

На рисунку 1 представлені графіки ймовірності просіювання частинок через сито згідно з формулою 

А.М. Годена (1). 
 

 
 

Рис. 1. Графіки ймовірності просіювання частинок через сито  

за формулою А.М. Годена (𝜑 = 1) (1– 𝜓 = 1, 2 – 𝜓 = 2) 
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Таким чином, для щілинних отворів сита ймовірність просіювання частинок через сито є лінійною 

спадаючою функцією в межах [0; 1]. Своєю чергою для квадратних отворів сита ймовірність просіювання 

частинок через сито є квадратичною спадаючою функцією в межах [0; 1]. 

На прикладі моделі О.М. Тихонова виконаємо математичне дослідження однієї з моделей, в якій 

використано співвідношення 1 − 𝑑/𝑎. 

Модель О.М. Тихонова – сепараційна характеристика грохоту (за підрешітним продуктом) та модель 

кінетики грохочення [6] 

=
𝑒𝑥𝑝−𝑢1−𝑑𝑎𝜓maxℎ[], (𝑑<𝑎), (2) 

де 𝜀 – сепараційна характеристика вилучення в підрешітний продукт вузької фракції з розміром частинок 

𝑑, частки од.;  
𝑢max – максимальна швидкість просіювання частинок, м/с; 

ℎ – середня товщина шару матеріалу над ситом, м; 

𝑡 – час просіювання, с.  

У моделі для спрощення прийнято, що середня товщина шару матеріалу над ситом ℎ постійна. 

В модель введено час просіювання 𝑡 або продуктивність грохоту, яка обчислювалась згідно з формулою 

=
𝑀𝑄, 

(3) 

де 𝑀 – запас матеріалу на грохоті, т; 
𝑄 – вхідна продуктивність, т/год. 

Разом з тим, повертаючись до структурного синтезу моделі, необхідно підкреслити, що як вхідна 

змінна модель процесу тонкого грохочення є усереднений розмір частинок 𝑑, а вихідною змінною згідно 

з формулою (2) – сепараційна характеристика, тобто вилучення в підрешітний продукт вузької фракції 𝜀. 

Аналіз формули (2) показує, що як параметри входять окремо три змінні 𝑢max, внаслідок чого виникають 

труднощі під час дослідження при застосуванні цієї формули. Для усунення цієї незручності пропонується 

ввести один параметр, скориставшись теорією подібності [7]. Згідно з методами цієї теорії введемо один 

безрозмірний мультиплікативний параметр у вигляді 

𝑘 =
𝑢max

ℎ
. (4) 

Крім цього, вбачається доцільним перейти до безрозмірної величини, позначивши 

𝜂 =
𝑑

𝑎
. (5) 

Враховуючи наведені вище параметри (4, 5) рівняння (2) прийме вигляд 

𝜀 = 1 − 𝑒𝑥𝑝[−𝑘 ⋅ (1 − 𝜂𝜓)] , 0 < 𝜂 < 1. (6) 

Аналіз рівняння (6) показує, що воно характеризується нелінійною статичною безперервною 

детермінованою структурою. Крім того, це рівняння містить один параметр 𝑘. Таким чином, на етапі 

структурного синтезу визначається лише вид та характер моделі, а її параметр залишається невідомим. 
Після структурного синтезу моделі процесу тонкого грохочення у вигляді формули (6) завдання 

ідентифікації зводиться до визначення параметра моделі 𝑘 процесу тонкого грохочення згідно з (6). 

У процесі ідентифікації використовуються апостеріорні дані, які є спостереженнями станів входу розміру 

частинок 𝐷 і виходу сепараційної характеристики 𝛦 процесу тонкого грохочення в процесі його 

нормальної експлуатації, тобто інформація 

𝐼 = ⟨𝜂𝑖 , 𝜀𝑖⟩, 𝑖 = 1, . . . , 𝑁,  (7) 

де 𝑖 – номер фіксації значень 𝑑𝑖 , 𝜀𝑖; 
𝑁 – число фіксацій. 

Для знаходження величини параметра 𝑘 використовуємо алгоритм неадаптивний ідентифікації [8]. 

Для цього підставимо дані (7) в формулу (6). В результаті отримаємо систему із 𝑁 рівнянь з однією 

невідомою 

1 − 𝑒𝑥𝑝[−𝑘 ⋅ (1 − 𝜂1
𝜓)] = 𝜀1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1 − 𝑒𝑥𝑝[−𝑘 ⋅ (1 − 𝜂𝑁
𝜓)] = 𝜀𝑁 

(8) 

Таким чином, завдання неадаптивної ідентифікації об’єкта тонкого грохочення зводиться до вирішення 

системи рівнянь (8). Ця система має дві істотні властивості, які визначають труднощі при її вирішенні: 

несумісність та трансцендентність. Несумісність пов’язана з тим, що кількість рівнянь більша, ніж невідомих, 

а трансцендентність – з складним видом функції (6). Основні труднощі пов’язані з розв’язанням несумісної 

системи рівнянь (8). Для вирішення несумісної системи рівнянь (6) скористаємося методом найменших 

квадратів, тобто мінімізуємо сумарну нев’язку правих та лівих частин рівнянь цієї системи. Для цього 

утворюємо функцію сумарної нев’язки у вигляді суми квадратів нев’язок кожного з цих рівнянь 

𝛹(𝑘) = ∑ {𝜀𝑖 − 1 + 𝑒𝑥𝑝[−𝑘 ⋅ (1 − 𝜂𝑖
𝜓)]}𝑁

𝑖=1

2
. (9) 
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Функція (9) невід’ємна та дорівнює нулю при збігу правих та лівих частин рівнянь системи. При цьому 

чим праві частини рівнянь системи (9) ближчі до лівих, тим менше значення функції нев’язки (9). Це дає 

підставу вважати рішенням системи (8) таке значення параметра  

𝑘∗ (10) 

за якого функція нев’язки мінімальна, тобто 

𝛹(𝑘∗) = min
𝑘

𝛹(𝑘).  

Таким чином, для вирішення несумісної системи рівняння (8) достатньо мінімізувати функцію 

сумарної нев’язки (9), тобто 

𝛹(𝑘) → min
𝑘

. (11) 

Розв’язання задачі мінімізації (11) є досить складним, що пов’язано зі структурою функції (6). 

Водночас можливий спосіб, що дозволяє спростити вирішення цього завдання. Для цього перетворюємо 

формулу (6) так, щоб параметр 𝑘 входив лінійно в перетворений вираз 

𝜀 = 1 − 𝑒𝑥𝑝[−𝑘 ⋅ (1 − 𝜂𝜓)], 1 − 𝜀 = 𝑒𝑥𝑝[−𝑘 ⋅ (1 − 𝜂𝜓)], 

𝑙𝑛(1 − 𝜀) = −𝑘 ⋅ (1 − 𝜂𝜓). 
(12) 

У рівняння (12) параметр 𝑘 входить лінійно. Користуючись інформацією (7) про вхідні і вихідні змінні 

процесу тонкого грохочення, отримуємо систему лінійних алгебраїчних рівнянь відносно невідомого 

параметра 𝑘 

𝑙𝑛( 1 − 𝜀𝑖) + 𝑘 ⋅ [1 − 𝜂𝑖
𝜓] = 0,  𝑖 = 1, . . . , 𝑁. (13) 

Функція сумарної нев’язки для розв’язання несумісної системи рівнянь (13) запишеться у вигляді 

𝛷(𝑘) = ∑ {𝑙𝑛( 1 − 𝜀𝑖) + 𝑘 ⋅ [1 − 𝜂𝑖
𝜓]}𝑁

𝑖=1

2
.  (14) 

Лінійність алгебраїчних рівнянь відносно невідомого параметра 𝑘 дозволяє звести задачу мінімізації 

функції (14) до розв’язання лінійного рівняння. Вигляд функції (14) дозволяє розв’язати задачу 

мінімізації (14), прирівнявши похідну нулю функції 𝛷(𝑘), тобто 

𝛷′(𝑘) = 0.  (15) 

Оскільки функція (13) є лінійною функцією щодо 𝑘, то 𝛷(𝑘) в (14) – квадратична функція, чим і 

обумовлюється лінійність рівняння (15). Справді, підставляючи (14) у (15) та диференціюючи, отримуємо 

після перетворень 

𝛷′(𝑘) = 2 ∑ {𝑙𝑛( 1 − 𝜀𝑖) + 𝑘 ⋅ [1 − 𝜂𝑖
𝜓]}𝑁

𝑖=1 ⋅ [1 − 𝜂𝑖
𝜓] = 0,  

∑ [𝑙𝑛( 1 − 𝜀𝑖) + 𝑘 ⋅ (1 − 𝜂𝑖
𝜓)]𝑁

𝑖=1 ⋅ (1 − 𝜂𝑖
𝜓) = 0, 

∑ [𝑙𝑛( 1 − 𝜀𝑖)]𝑁
𝑖=1 ⋅ (1 − 𝜂𝑖

𝜓) = −𝑘 ⋅ ∑ (1 − 𝜂𝑖
𝜓)

2𝑁
𝑖=1 . 

(16) 

Розв’язуючи рівняння (16) щодо параметра 𝑘, знаходимо оптимальну величину цього параметра 

𝑘∗ = −
∑ [𝑙𝑛(1−𝜀𝑖)]𝑁

𝑖=1 ⋅(1−𝜂𝑖
𝜓)

∑ (1−𝜂𝑖
𝜓)

2𝑁
𝑖=1

.  (17) 

Таким чином, з урахуванням (17), математична модель сепараційної характеристики тонкого 

грохочення (6) приймає вигляд 

𝜀 = 1 − 𝑒𝑥𝑝[−𝑘∗ ⋅ (1 − 𝜂𝜓)] , (0 < 𝜂 < 1).  (18) 

Треба підкреслити, що обмеження, які накладаються на змінні 𝜂 і 𝜀, визначають обмеження на 

параметр 𝑘. Дійсно, наприклад при 𝜓 = 1, повинно мати місце 
𝜀 = 1 − 𝑒𝑥𝑝[−𝑘 ⋅ (1 − 𝜂)], 1 − 𝜀 = 𝑒𝑥𝑝[−𝑘 ⋅ (1 − 𝜂)],  
𝑙𝑛( 1 − 𝜀) = −𝑘 ⋅ (1 − 𝜂),  

1 − 𝜂 =
𝑙𝑛(1−𝜀)

−𝑘
,           𝜂 = 1 +

𝑙𝑛(1−𝜀)

𝑘
. 

 

Оскільки,  
0 < 𝜂 < 1, 

то 

0 < 1 +
𝑙𝑛(1−𝜀)

𝑘
< 1,     −𝑘 < 𝑙𝑛( 1 − 𝜀) < 0, 𝑒−𝑘 < 1 − 𝜀 < 1, 

𝑒−𝑘 − 1 < −𝜀 < 0, 

1 − 𝑒−𝑘 > 𝜀 > 0. 

(19) 

Таким чином, якщо параметр 𝑘 визначений за формулою (17), то згідно з формулою (11) величина 

сепараційної характеристики повинна задовольняти нерівності (19). 
Необхідно підкреслити особливість застосування математичної моделі процесу тонкого грохочення, 

яка пов’язана з характером впливу вхідної змінної 𝑑, а значить і 𝜂. Вхідний вплив у вигляді частинок 

розміру 𝑑 є випадковою величиною з деяким законом розподілу, тому після процесу тонкого грохочення 

вихідна змінна у вигляді сепараційної характеристики вилучення в підрешітний продукт вузької фракції 𝜀 

також є випадковою величиною, але вже з іншим законом розподілу. Тому природно поставити питання, 

яким буде закон розподілу сепараційної характеристики продукту вузької фракції 𝜀 як випадкової 

величини.  



ISSN 2706-5847    № 2 (96) 2025 

263 

Розглянемо математичну постановку задачі. Нехай крупність частинок 𝑑 як безперервної випадкової 

величини задається щільністю розподілу 𝑓(𝑑) [9]. Враховуючи заміну (5), щільність розподілу зміною 𝜂 

запишеться у вигляді 

𝜑(𝜂) = 𝑓(𝑎 ⋅ 𝜂) ⋅ 𝑎.  (20) 

Необхідно знайти щільність розподілу 𝑔(𝜀) сепараційної характеристики 𝜀, яка є випадковою 

величиною та визначається формулою (6). Насамперед слід зазначити, що функція (6) є монотонно 

спадаючою. Для підтвердження цього обчислимо похідну цієї функції 

𝜀′(𝜂) = −𝑘 ⋅ 𝜓 ⋅ 𝜂𝜓−1 𝑒𝑥𝑝[−𝑘 ⋅ (1 − 𝜂𝜓)], (0 < 𝜂 < 1).  (21) 

Оскільки, згідно з (21) має місце 
𝜀′(𝜂) < 0,    (0 < 𝜂 < 1),  

то функція (6) є монотонно спадаючою. 
Оскільки функція (6) є монотонно спадаючою та диференційованою, то зворотна функція існує і є 

також монотонно спадаючою та диференційованою. При цьому формула, що визначає цю зворотну 

функцію, згідно з (6), має послідовно вигляд 

1 − 𝜀 = 𝑒𝑥𝑝[−𝑘 ⋅ (1 − 𝜂𝜓)], 𝑙𝑛( 1 − 𝜀) = −𝑘 ⋅ (1 − 𝜂𝜓),
𝑙𝑛(1−𝜀)

𝑘
= 𝜂𝜓 − 1, 𝜂𝜓 = 

= 1 +
𝑙𝑛(1−𝜀)

𝑘
, 𝜂(𝜀) = (1 +

𝑙𝑛(1−𝜀)

𝑘
)

1

𝜓
.  

(22) 

Якщо на осі 0𝜀 задати інтервал (𝜀; 𝜀 + 𝛥𝜀) і відобразити його з допомогою функції (14) на вісь 0𝜂, то 

отримаємо інтервал (𝜂; 𝜂 + 𝛥𝜂). Події (𝜀 < 𝛦 < 𝜀 + 𝛥𝜀) і (𝜂 < 𝛨 < 𝜂 + 𝛥𝜂) причинно детерміновані, 

оскільки функціонально пов’язані. Тому їхні ймовірності рівні, тобто 
𝑃(𝜀 < 𝛦 < 𝜀 + 𝛥𝜀) = 𝑃(𝜂 < 𝛨 < 𝜂 + 𝛥𝜂).  (23) 

Тоді, згідно з визначенням щільність розподілу сепараційної характеристики, має місце 

𝑔(𝜀) = 𝑙𝑖𝑚
𝛥𝜀→0

𝑃(𝜀 < 𝛦 < 𝜀 + 𝛥𝜀)

𝛥𝜀
,  (24) 

Враховуючи (15), формулу (16) подаємо у вигляді 

𝑔(𝜀) = 𝑙𝑖𝑚
𝛥𝜀→0

𝑃(𝜀 < 𝛦 < 𝜀 + 𝛥𝜀)

𝛥𝜀
.  (25) 

Беручи до уваги, що функція (22) диференційована, можна записати вираз для збільшення 

𝛥𝜂 = 𝜂′(𝜀)𝛥𝜀.  (26) 

Оскільки згідно з (22) 

𝜂′(𝜀) =
1

𝑘⋅𝜓⋅(𝜀−1)
(1 +

𝑙𝑛(1−𝜀)

𝑘
)

1

𝜓
−1

                                    

то формула (26) набуває вигляду 

𝛥𝜂 =
1

𝑘⋅𝜓⋅(𝜀−1)
(1 +

𝑙𝑛(1−𝜀)

𝑘
)

1

𝜓
−1

𝛥𝜀. 
 

Або 

𝛥𝜀 = 𝑘 ⋅ 𝜓 ⋅ (𝜀 − 1) (1 +
𝑙𝑛(1−𝜀)

𝑘
)

1−
1

𝜓
𝛥𝜂.  (27) 

Підставляючи (27) у формулу (25), знаходимо 

𝑔(𝜀) = 𝑙𝑖𝑚
𝛥𝜀→0

𝑃(𝜂 < 𝛨 < 𝜂 + 𝛥𝜂)

𝛥𝜂
|

1

𝑘 ⋅ 𝜓 ⋅ (𝜀 − 1)
(1 +

𝑙𝑛( 1 − 𝜀)

𝑘
)

1
𝜓

−1

| 

 

або враховуючи, що 𝜀 < 1, отримуємо 

𝑔(𝜀) = 𝑙𝑖𝑚
𝛥𝜀→0

𝑃(𝜂<𝐷<𝜂+𝛥𝜂)

𝛥𝜂

1

𝑘⋅𝜓⋅(1−𝜀)
(1 +

𝑙𝑛(1−𝜀)

𝑘
)

1

𝜓
−1

  (28) 

Відповідно до визначення щільності розподілу для крупності частинок як випадкової величини має 

місце рівність 

𝑔(𝜀) = 𝑙𝑖𝑚
𝛥𝜀→0

𝑃(𝜂 < 𝐷 < 𝜂 + 𝛥𝜂)

𝛥𝜂

1

𝑘⋅𝜓⋅(1−𝜀)
(1 +

𝑙𝑛(1−𝜀)

𝑘
)

1

𝜓
−1

  (29) 

Враховуючи, що внаслідок неперервності функції (22) із 𝛥𝜀 → 0 витікає 𝛥𝜂 → 0, формула (20) з 

урахуванням (29) набуває вигляду 

𝑔(𝜀) = 𝑙𝑖𝑚
𝛥𝜂→0

𝑃(𝜂 < 𝛨 < 𝜂 + 𝛥𝜇)

𝛥𝜂

1

𝑘 ⋅ 𝜓 ⋅ (1 − 𝜀)
(1 +

𝑙𝑛( 1 − 𝜀)

𝑘
)

1
𝜓

−1

 

𝑔(𝜀) = 𝜑(𝜂)
1

𝑘⋅𝜓⋅(1−𝜀)
(1 +

𝑙𝑛(1−𝜀)

𝑘
)

1

𝜓
−1

. 

(30) 

І, нарешті, користуючись формулою (22), отримуємо остаточний вираз для щільності розподілу 

сепараційної характеристики 
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𝑔(𝜀) = 𝜑 [(1 +
𝑙𝑛(1−𝜀)

𝑘
)

1

𝜓
]

1

𝑘⋅𝜓⋅(1−𝜀)
(1 +

𝑙𝑛(1−𝜀)

𝑘
)

1

𝜓
−1

  (31) 

Враховуючи (20), формула (32) прийме вигляд 

𝑔(𝜀) = 𝑓 [𝑎 (1 +
𝑙𝑛(1−𝜀)

𝑘
)

1

𝜓
]

𝑎

𝑘⋅𝜓⋅(1−𝜀)
(1 +

𝑙𝑛(1−𝜀)

𝑘
)

1

𝜓
−1

  (32) 

Знаючи щільність розподілу крупності частинок 𝜑(𝜂), її інтегральна функція розподілу запишеться у 

вигляді 

   
0

x dx


      
(33) 

Своєю чергою інтегральна функція розподілу сепараційної характеристики набуде вигляду 

   
0

G g dxx


     
(34) 

З урахуванням (31) формула (34) послідовно запишеться так, 

 

1

1 1
1

ln(1 )
11 1

0

1

1

1

ln(1 ) l1 n(1 )
1 1

(1 )ln(1 ) ln(1 )
1 1 ( )

(1

1

)
ln(1 )

0 1 1

k

G

x x
y dy dx

k k x kx x
dx y dy

k k x k

x y x y
k


  

 




 









 
 

  

    
      

 


        
      

     
 

   


 
 

   


 





  

𝐺(𝜀) = ∫ 𝜑(𝑦)𝑑𝑦
(1+

𝑙𝑛(1−𝜀)

𝑘
)

1
𝜓

1
= ∫ 𝜑(𝑦)𝑑𝑦 +

0

1

+ ∫ 𝜑(𝑦)𝑑𝑦 =
(1+

𝑙𝑛(1−𝜀)

𝑘
)

1
𝜓

0
∫ 𝜑(𝑦)𝑑𝑦 −

(1+
𝑙𝑛(1−𝜀)

𝑘
)

1
𝜓

0
∫ 𝜑(𝑦)𝑑𝑦

1

0
. 

𝐺(𝜀) = 𝛷 [(1 +
𝑙𝑛(1−𝜀)

𝑘
)

1

𝜓
] − 𝛷(1).  

Таким чином, інтегральна функція розподілу сепараційної характеристики пов’язана з інтегральною 

функцією розподілу крупності частинок рівністю 

𝐺(𝜀) = 𝛷 [(1 +
𝑙𝑛(1−𝜀)

𝑘
)

1

𝜓
] − 𝛷(1).  (35) 

Знання щільності розподілу крупностей частинок дозволяє обчислити числові характеристики цих 

змінних. Так математичне очікування, дисперсія та середньоквадратичне відхилення крупності частинок 

знаходяться відповідно за формулами 

𝑀[𝐷] = ∫ 𝑥 ⋅ 𝑓(𝑥)𝑑𝑥
∞

0
; (36) 

𝐷[𝐷] = ∫ (𝑥 − 𝑀[𝐷])2𝑓(𝑥)𝑑𝑥
∞

0
; (37) 

𝜎𝑑 = √∫ (𝑥 − 𝑀[𝐷])2𝑓(𝑥)𝑑𝑥
∞

0
. (38) 

Аналогічно знаходяться числові характеристики сепараційної характеристики. 
Так, математичне очікування, дисперсія і середньоквадратичне відхилення сепараційної 

характеристики з урахуванням (31) знаходяться відповідно за формулами 

𝑀[𝛦] = ∫ 𝑥 ⋅ 𝜑(𝑥)𝑑𝑥
1

0
=

1

𝑘⋅𝜓
∫

1

0
𝜑 [(1 +

𝑙𝑛(1−𝑥)

𝑘
)

1

𝜓
]

𝑥

(1−𝑥)
(1 +

𝑙𝑛(1−𝑥)

𝑘
)

1

𝜓
−1

𝑑𝑥  (39) 

𝐷[𝛦] =
1

𝑘⋅𝜓
∫ (𝑥 − 𝑀[𝛦])2 ⋅

1

0
𝜑 [(1 +

𝑙𝑛(1−𝑥)

𝑘
)

1

𝜓
]

1

(1−𝑥)
(1 +

𝑙𝑛(1−𝑥)

𝑘
)

1

𝜓
−1

𝑑𝑥  (40) 

𝜎𝜀 = √
1

𝑘⋅𝜓
∫ (𝑥 − 𝑀[𝛦])21

0
𝜑 [(1 +

𝑙𝑛(1−𝑥)

𝑘
)

1

𝜓
]

1

(1−𝑥)
(1 +

𝑙𝑛(1−𝑥)

𝑘
)

1

𝜓
−1

𝑑𝑥  (41) 

Якщо враховувати розміри отворів 𝑎, то згідно з формулою (20) формули (39), (40) і (41) запишуться 

у вигляді 

𝑀[𝐸] = ∫ 𝑥 ⋅ 𝑔(𝑥)𝑑𝑥 =
𝑎

𝑘⋅𝜓
∫ 𝑥 ⋅

1

0

1

0
𝑓 [𝑎 ⋅ (1 +

𝑙𝑛(1−𝑥)

𝑘
)

1

𝜓
]

1

(1−𝑥)
(1 +

𝑙𝑛(1−𝑥)

𝑘
)

1

𝜓
−1

𝑑𝑥; (42) 

𝐷[𝛦] = ∫ (𝑥 − 𝑀[𝐸])2 ⋅ 𝑔(𝑥)𝑑𝑥 =
𝑎

𝑘⋅𝜓
∫ (𝑥 − 𝑀[𝛦])2 ⋅ 𝑓 [𝑎 ⋅ (1 +

1

0

1

0

+
𝑙𝑛(1−𝑥)

𝑘
)

1

𝜓
]

1

(1−𝑥)
(1 +

𝑙𝑛(1−𝑥)

𝑘
)

1

𝜓
−1

𝑑𝑥; 

(43) 
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𝜎𝜀 = √
𝑎

𝑘⋅𝜓
∫ (𝑥 − 𝑀[𝛦])2 ⋅ 𝑓 [𝑎 ⋅ (1 +

𝑙𝑛(1−𝑥)

𝑘
)

1

𝜓
]

1

(1−𝑥)
(1 +

𝑙𝑛(1−𝑥)

𝑘
)

1

𝜓
−1

𝑑𝑥
1

0
.  (44) 

В подальшому виконаємо імітаційне моделювання процесу тонкого грохочення. Під час дослідження 

розподілу крупності частинок часто використовують розподіл Розіна – Раммлера – Шперлинга – Боннета, 

іменоване як RRSB [10], інтегральна функція якого має вигляд  

𝐹(𝑑) = 1 − 𝑒−(
𝑑

𝛥
)

𝑛

 ,   𝑑 > 0, (45) 

де 𝛥 і 𝑛 – параметри. 

Щільність цього розподілу представиться як похідна від інтегральної функції розподілу (45) 

𝑓(𝑑) =  𝐹′(𝑑) =
𝑛

𝛥𝑛 𝑑𝑛−1𝑒−(
𝑑

𝛥
)

𝑛

, 𝑑 > 0.  (46) 

Необхідно відзначити, що в формулі (45) величина ∆ характеризує середній розмір частинок, а 

величина 𝑛 визначає купчастість розподілу частинок щодо середнього розміру.  
Математичне очікування крупності частинок розподілу RRSB з урахуванням (46) з допомогою 

інтегрування частинами записується через гамма-функцію Ейлера [11] 

   
0 0

1
  1

n
n x

x
M D x f x dx n e dx Г

n

 
   
     

         
   

   (47) 

де Г(1 + 𝛼) = ∫ 𝑡𝛼𝑒−𝑡𝑑𝑡
∞

0
 – гамма-функція Ейлера. 

Дисперсія крупності частинок розподілу RRSB також виражається через гамма-функцію Ейлера 

𝐷[𝐷] = ∫
∞

0
(𝑥 − 𝑀[𝐷])2 ⋅ 𝑓(𝑥)𝑑𝑥 = 𝛥2 [Г (1 +

2

𝑛
) − Г2 (1 +

1

𝑛
)]  (48) 

Своєю чергою середньоквадратичне відхилення крупності частинок розподілу RRSB запишеться у 

вигляді 

𝜎𝑑 = 𝛥√Г (1 +
2

𝑛
) − Г2 (1 +

1

𝑛
)  (49) 

Необхідно зазначити, що в формулі (37) величина ∆ характеризує середній розмір частинок, а величина 

𝑛 визначає купчастість розподілу частинок щодо середнього розміру.  
У випадку наявності розподілу RRSB, згідно з (30), щільність розподілу підрешіткової сепараційної 

характеристики продукту грохочення запишеться так 

𝑔(𝜀) =
𝑛

𝑘⋅𝜓⋅(1−𝜀)
(

𝑎

𝛥
)

𝑛

(1 +
𝑙𝑛(1−𝜀)

𝑘
)

𝑛

𝜓
−1

⋅ 𝑒−(
𝑎

𝛥
)

𝑛
⋅(1+

𝑙𝑛(1−𝜀)

𝑘
)

𝑛
𝜓

  (50) 

Математичне очікування сепараційної характеристики знаходиться за формулою 

𝑀[𝛦] = ∫ 𝑥𝑔(𝑥)𝑑𝑥
1

0
   

або з урахуванням (50) 

𝑀[𝛦] = ∫ 𝜀 ⋅
1

0
𝑔(𝜀)𝑑𝜀 =

𝑛

𝑘⋅𝜓
(

𝑎

𝛥
)

𝑛

∫
𝜀

(1−𝜀)
(1 +

𝑙𝑛(1−𝜀)

𝑘
)

𝑛

𝜓
−1

⋅ 𝑒−(
𝑎

𝛥
)

𝑛
⋅(1+

𝑙𝑛(1−𝜀)

𝑘
)

𝑛
𝜓

𝑑𝜀
1

0
. (51) 

Дисперсія сепараційної характеристики знаходиться за формулою 

𝐷[𝛦] = ∫ 𝑥2𝑔(𝑥)𝑑𝑥
1

0
− 𝑀2[𝐸]   

або з урахуванням (49) 

𝐷[𝛦] =
𝑛

𝑘⋅𝜓
(

𝑎

𝛥
)

𝑛

∫
𝜀2

(1−𝜀)
(1 +

𝑙𝑛(1−𝜀)

𝑘
)

𝑛

𝜓
−1

⋅ 𝑒−(
𝑎

𝛥
)

𝑛
⋅(1+

𝑙𝑛(1−𝜀)

𝑘
)

𝑛
𝜓

𝑑𝜀
1

0
− 𝑀2[𝐸]. (52) 

Своєю чергою середньоквадратичне відхилення визначається формулою 

𝜎𝜀 = √𝐷[𝛦]. (53) 

В подальшому розрахунки проводилися шляхом використання математичного пакета Mathcad [12] та 

електронних таблиць Microsoft Excel [13]. 
Відповідно до вхідної інформації на вхід процесу тонкого грохочення надходить рудна шихта, 

фракційний склад якої представлений на рисунку 2. 

Аналіз гранулометричного складу вхідної рудної шихти дав можливість припустити, що має місце 

розподіл RRSB крупності вхідної рудної шихти, що описується формулою (45). 
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Рис. 2. Гранулометричний склад вхідної рудної шихти 

 

Для знаходження параметрів, що входять до формули (45), скористаємося методом найменших 

квадратів (МНК) [14]. Для зручності використання МНК перетворимо формулу (45) так, щоб невідомі 

параметри входили в неї лінійно. Для цього скористаємося послідовно діями 

𝑙𝑛(1 − 𝐹(𝑑)) = − (
𝑑

𝛥
)

𝑛

, − 𝑙𝑛(1 − 𝐹(𝑑)) = (
𝑑

𝛥
)

𝑛

, 

𝑙𝑛(− 𝑙𝑛(1 − 𝐹(𝑑))) = 𝑛 ⋅ 𝑙𝑛 𝑑 − 𝑛 𝑙𝑛 𝛥. 
(54) 

Вводячи в (54) позначення 
𝑦 = 𝑙𝑛(− 𝑙𝑛(1 − 𝐹(𝑑))), 𝑥 = 𝑙𝑛 𝑑, 𝑎 = −𝑛 𝑙𝑛 𝛥,                                                                                 (55) 

отримаємо формулу, в яку шукані параметри входять лінійно 

𝑦 = 𝑎 + 𝑛 ⋅ 𝑥  (56) 

де 
𝑦 = 𝑙𝑛(− 𝑙𝑛(1 − 𝐹(𝑑))), 𝑥 = 𝑙𝑛 𝑑,   𝑎 = −𝑛 𝑙𝑛 𝛥. 

У таблиці 1 подано результати розрахунків за формулами (56). Згідно з неадаптивним алгоритмом 

МНК для знаходження параметрів 𝑎 і 𝑛 треба підставити пари значень (𝑥𝑖 , 𝑦𝑖), (𝑖 = 1, 2, . . . , 20) з таблиці 1 

у формулу (55).  

В результаті добудем систему з 20 рівнянь з двома невідомими, яку можна записати у вигляді 

𝑎 + 𝑛 ⋅ 𝑥𝑖 = 𝑦𝑖 , 𝑖 = 1, . . . , 20. (57) 

 

Таблиця 1 

Результати розрахунків згідно з формулою (55) 

 

№ 

з/п 

Фракції 

(𝑑), мм 

Емпірична 

функція 

розподілу 𝐹𝑛(𝑑) 

x y 

Теоретична 

функція 

розподілу 𝐹(𝑑) 
|𝐹𝑛(𝑑) − 𝐹(𝑑)| 

1 2 3 4 5 6 7 

1 0.005 0.04 -5.2983 -1785 0.055 0.016 

2 0.01 0.14 -4.6052 -1.8916 0.147 0.009 

3 0.015 0.3 -4.1997 -1.0309 0.251 0.044 

4 0.020 0.4 -7120 -0.6717 0.359 0.035 

5 0.025 0.5 -3.6889 -0.3665 0.461 0.031 

6 0.030 0.6 -4066 -0.0874 0.555 0.036 

7 0.035 0.73 -2524 0.2695 0.639 0.082 

8 0.040 0.75 -1189 0.3266 0.711 0.030 

9 0.045 0.8 -811 0.4759 0.772 0.019 

10 0.05 0.82 -2.9957 0.5393 0.823 0.011 

11 0.055 0.85 -2.9004 0.6403 0.864 0.021 

12 0.06 0.88 -2.8134 0.7515 0.897 0.023 
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Закінчення табл. 1 

1 2 3 4 5 6 7 

13 0.065 0.9 -2.7334 0.8340 0.922 0.028 

14 0.07 0.92 -2.6593 0.9265 0.942 0.027 

15 0.075 0.95 -2.5903 1.0972 0.958 0.011 

16 0.08 0.96 -2.5257 1.1690 0.969 0.012 

17 0.085 0.97 -2.4651 1.2546 0.978 0.010 

18 0.09 0.98 -2.4079 1.3641 0.984 0.006 

19 0.095 0.99 -2.3539 1.5272 0.989 0.000 

20 0.10 0.0995 -2.3026 1.6674 0.992 0.002 
Джерело: розробка автора  

 

Завдання неадаптивної ідентифікації зводиться до розв’язання системи рівнянь (57). Для розв’язання 

цієї системи застосовується МНК, в результаті застосування якого утворюється система рівнянь 

{
𝑎 + 𝑥̄ ⋅ 𝑛 = 𝑦̄

𝑥̄ ⋅ 𝑎 + 𝑥̄2 ⋅ 𝑛 = 𝑥𝑦
, (58) 

де 𝑥̄ =
1

20
∑ 𝑥𝑖

20
𝑖=1 , 𝑦̄ =

1

20
∑ 𝑦𝑖

20
𝑖=1 ,  𝑥̄2 =

1

20
∑ 𝑥𝑖

220
𝑖=1 ,    𝑥𝑦 =

1

20
∑ 𝑥𝑖𝑦𝑖

20
𝑖=1 .    

Вирішення системи рівнянь (58) можна знайти за формулами Крамера [15] 

𝑎 =
𝛥1

𝛥
, 𝑛 =

𝛥2

𝛥
, (59) 

де 𝛥 = |
1 𝑥̄
𝑥̄ 𝑥̄2| = 𝑥̄2 − (𝑥̄)2,  𝛥1 = |

𝑦̄ 𝑥̄

𝑥𝑦 𝑥̄2| = 𝑦̄ ⋅ 𝑥̄2 − 𝑥̄ ⋅ 𝑥𝑦,  𝛥2 = |
1 𝑦̄

𝑥̄ 𝑥𝑦
| = 𝑥𝑦 − 𝑥̄ ⋅ 𝑦̄. 

У таблиці 2 подано результати обчислення середніх згідно з формулою (58). 
 

Таблиця 2 

Результати розрахунків системи згідно з формулою (58) 
 

№ з/п 𝑥𝑖  𝑦𝑖  𝑥𝑖
2 𝑥𝑖 ⋅ 𝑦𝑖  

1 -5.2983 -1785 28.0722 16.9468 

2 -4.6052 -1.8916 21.2076 8.7114 

3 -4.1997 -1.0309 17.6375 4.3296 

4 -7120 -0.6717 15.3039 2.6278 

5 -3.6889 -0.3665 13.6078 1.3520 

6 -4066 -0.0874 12.2959 0.3065 

7 -2524 0.2695 11.2386 -0.9035 

8 -1189 0.3266 10.3612 -1.0514 

9 -811 0.4759 9.6168 -1.4758 

10 -2.9957 0.5393 8.9744 -1.6156 

11 -2.9004 0.6403 8.4124 -1.8572 

12 -2.8134 0.7515 7.9153 -2.1144 

13 -2.7334 0.8340 7.4713 -2.2797 

14 -2.6593 0.9265 7.0717 -2.4639 

15 -2.5903 1.0972 6.7095 -2.8420 

16 -2.5257 1.1690 6.3793 -2.9527 

17 -2.4651 1.2546 6.0767 -3.0928 

18 -2.4079 1.3641 5.7982 -1846 

19 -2.3539 1.5272 5.5407 -4948 

20 -2.3026 1.6674 5.3019 -6393 

Середні -1615 0.2798 10.7497 0.0453 
Джерело: розробка автора  
 

Використовуючи отримані дані та виконуючи певні підстановки у формулу (45), отримуємо 

аналітичну форму запису закону розподілу RRSB крупності вхідної рудної шихти 

𝐹(𝑑) = 1 − 𝑒−(
𝑑

0.034
)

1.489

  (60) 

Доцільно, скориставшись критерієм згоди, перевірити гіпотезу про вид закону розподілу, обраний у 

вигляді теоретичного. Найбільш простим у нашому випадку критерієм перевірки гіпотези про вид закону 

розподілу є критерій О.М. Колмогорова [16]. Цей критерій використовує максимальне значення 

абсолютної величини різниці між емпіричною функцією розподілу та відповідною теоретичною функцією 

розподілу, тобто 
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𝐷 = max
𝑑

|𝐹𝑛(𝑑) − 𝐹(𝑑)|. (61) 

Колмогоров О.М. довів, що для будь-якого виду безперервної функції розподілу 𝐹(𝑑) при 

необмеженому зростанні числа незалежних спостережень 𝑛, ймовірність нерівності 

𝐷√𝑛 ≥ 𝜆   (62) 

прямує до межі 

   
2 2

2
1 1

k k

k

P e







  
. 

(63) 

Для ймовірності (63) складено таблицю, яка наведена в [17]. За цією таблицею знаходиться ймовірність 

(63), яка відповідає тому, що за рахунок випадкових причин максимальна абсолютна розбіжність (61) буде 

не меншою, ніж спостерігається. Якщо ймовірність (63) досить велика, можна вважати, що гіпотеза про 

закон розподілу вважається сумісною з результатами експерименту. Згідно з даними, наведеними в 

останньому стовпці таблиці 1, величина (61) 

𝐷 = 0,082. (64) 

Тоді формула (62) набуває значення 

𝜆0 = 𝐷√𝑛 = 0.082 ⋅ √20 = 0.367. (65) 

За таблицею, наведеною в [13], знаходимо 

𝑃(𝜆0) = 0,995. (66) 

Оскільки отримана ймовірність (66) досить велика, можна зробити висновок, що розбіжність між 

емпіричною і теоретичною функціями розподілу несуттєва. Таким чином, цю розбіжність можна пояснити 

випадковістю, тобто дані експерименту добре узгоджуються з гіпотезою про те, що розмір фракцій у 

рудній шихті є випадковою величиною, яка має розподіл RRSB. 

Графік щільності розподілу представлений на рисунку 3. 
 

 
 

Рис. 3. Щільність розподілу крупності вхідної рудної шихти 
 

 

Для знаходження параметра 𝑘∗ згідно з формули (17) скористаємося даними таблиці 2. В наведених 

даних прийнято, що 𝜓 = 1, оскільки був застосований щілинний отвір сита. Згідно з результатами, 

вказаними в таблиці 3, величина параметра 𝑘∗ дорівнює 

𝑘^ ∗= −(−11.709)/2.8525 = 4.105. (67) 
 

Таблиця 3 
Результати розрахунків для знаходження параметра 𝑘∗ згідно з формулою (17) 

№ з/п 𝜂𝑖 𝜀𝑖 𝑙𝑛( 1 − 𝜀𝑖) ⋅ (1 − 𝜂𝑖) (1 − 𝜂𝑖)
2 𝜀𝑚 (модель) 

1 0.1 0.98 -421 0.81 0.979 

2 0.2 0.96 -2.575 0.64 0.967 

3 0.3 0.9 -1.612 0.49 0.950 

4 0.4 0.89 -1.324 0.36 0.923 

5 0.5 0.92 -1.263 0.25 0.882 

6 0.6 0.85 -0.759 0.16 0.819 

7 0.7 0.75 -0.416 0.09 0.722 

8 0.8 0.6 -0.183 0.04 0.574 

9 0.9 0.4 -0.051 0.01 0.347 

10 0.95 0.1 -0.005 0.0025 0.192 

Сума   -11.709 2.8525  
Довідка: розробка автора  
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Під час знаходження параметра 𝑘 методом найменших квадратів коефіцієнт детермінації склав 

величину 

𝑅2 = 0.964,    

а коефіцієнт множинної регресії 
𝑅 = 0.982.  (68) 

Оскільки згідно з (67) виконується 

0.9 < 𝑅 < 1,    

то за якісною шкалою Чеддока зв’язок між змінними є «вельми високий» [17].  
З урахуванням (67) формула (6) набуде вигляду 

𝜀 = 1 − 𝑒𝑥𝑝[−4.105 ⋅ (1 − 𝜂)].  (69) 

Згідно з нерівністю (19) величина сепараційної характеристики повинна при математичному 

моделюванні бути обмежена величиною 

𝜀 < 1 − 𝑒−𝑘 = 1 − 𝑒−4.105 = 0.984.   (70) 

На рисунку 4 представлені графіки згідно з даними, що зазначені в таблиці 3. Аналіз наведених на 

рисунку 4 графіків показує їх хороший збіг, що було підтверджено шкалою Чеддока.  
Користуючись формулою (50) при 𝜓 = 1, визначаємо формулу щільності розподілу підрешітного 

продукту грохочення 

𝑔(𝜀) =
𝑛

𝑘⋅(1−𝜀)
(

𝑎

𝛥
)

𝑛

(1 +
𝑙𝑛(1−𝜀)

𝑘
)

𝑛−1

⋅ 𝑒−(
𝑎

𝛥
)

𝑛
⋅(1+

𝑙𝑛(1−𝜀)

𝑘
)

𝑛

. (71) 

З урахуванням вище отриманих значень, 𝑛 = 1,489, 𝛥 = 0,034 мм, 𝑘 = −4,105, 𝑎 = 0,075 мм за 

формулою (71) були проведені розрахунки, результати яких представлені у вигляді графіка на рисунку 5. 

Аналіз графіка щільності розподілу сепараційної характеристики підрешітного продукта тонкого 

грохочення показує, що залежність має різко зростаючий характер в мірі зростання величини сепараційної 

характеристики. Більш того, графік обмежений максимальною величиною, яка визначається формулою 

(70), що пов’язано з особливістю математичного моделювання.  

 

 
 

Рис. 4. Графіки сепараційних характеристик згідно з даними таблиці 2 
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Рис. 5. Графік щільності розподілу сепараційної характеристики 
підрешітного продукту грохочення згідно з (71) 

 

Через обмеження при моделюванні на величину сепараційної характеристики не виконується умова 

нормування щільності розподілу на одиницю. Оскільки має місце  

∫ 𝑔(𝜀)𝑑𝜀 = 0.927
0.98

0
. (72) 

Для того, щоб це врахувати треба поділити отримані результати на величину (72). Математичне 

очікування сепараційної характеристики підрешітного продукта грохочення визначається значенням. 
Дисперсія сепараційної характеристики підрешітного продукта грохочення визначається значенням 

𝐷[𝛦] =
∫ 𝜀2⋅𝑔(𝜀)𝑑𝜀

0.98
0

(∫ 𝑔(𝜀)𝑑𝜀
0.98

0 )
2 − 𝑀[𝛦]2 = 0.087. 

 

Середньоквадратичне відхилення дорівнює 

𝜎𝜀 = √𝐷[𝛦] = 0.295. 

Таким чином, визначаючи параметри для вхідного впливу рудної шихти як випадкової величини, а 

також параметри математичної моделі тонкого грохочення, можна розрахувати щільність розподілу 

вихідної величини підрешітної сепараційної характеристики як випадкової величини.  

Висновки та перспективи подальших досліджень. Аналіз тонкого грохочення вказав на 

необхідність розгляду його як складного об’єкта, особливістю якого є стохастичність поведінки, яка 

пов’язана з великою кількістю всякого роду невимірюваних другорядних процесів. Будь-який складний 

об’єкт, у тому числі і тонке грохочення, містить велику кількість таких несподіванок, які є свідченням його 

складності.  

Математично сформульовано та розв’язано задачу моделювання процесу тонкого грохочення з 

використанням методів теорії ймовірностей та математичної статистики, оскільки процес тонкого 

грохочення є стохастичним, зважаючи на наявність будь-яких несподіванок, які зручніше розглядати як 

випадкові фактори і трактувати їх як зашумленість, ніж розумітися на механізмі другорядних процесів, що 

протікають у процесі тонкого грохочення. 

Отримано формули для розрахунку сепараційної характеристики підрешітного продукту тонкого 

грохочення залежно від характеристик вхідної рудної шихти і параметрів процеса грохочення. При 

виведенні формул була врахована стохастичність вхідного потоку рудної шихти шляхом завдання 

щільності розподілу цього потоку як спосіб оцінки його фракційного складу. Опис процесу тонкого 

грохочення за допомогою моделі О.М. Тихонова дозволив оцінити щільність розподілу підрешіткової 

сепараційної характеристики як випадкової величини, яка визначається як характером вхідного 

випадкового потоку рудної шихти, так і властивостями самого процесу тонкого грохочення. 

Імітаційне моделювання процесу тонкого грохочення за умови стохастичності вхідного потоку рудної 

шихти, заданого у вигляді розподілу RRSB з оціненими параметрами, та застосування моделі тонкого 

грохочення О.М. Тихонова, підтвердили результати математичного моделювання. Підтверджені 

результати математичного моделювання, що зв’язують параметри вхідного потоку рудної шихти та 
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процесу тонкого грохочення, дозволяють застосовувати розвинений підхід для вирішення практичних 

завдань. 

На основі проведеного математичного моделювання сформовано перспективи подальших досліджень: 

- необхідність введення в математичну оцінку додаткових параметрів, які враховують параметри 

щільність твердого, щільність пульпи та ін.; 

- необхідність проведення експериментів для отримання статистики та фіксування зазначених вище 

параметрів; 

- перевірка впливу експериментальних даних в математичній моделі та оцінка зв’язку між змінними 

для перевірки адекватності моделі. 
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Oliinyk T.A., Nevzorov V.V. 

Analysis of the influence of the main parameters of iron ore raw materials 

 on the fine screening process using mathematical models 

The process of fine screening, in the ferrous metallurgy of Ukraine and the world, is of great importance and is one of the 

key stages of improving enrichment technologies, which directly determines the efficiency of iron distribution by size classes. 

The purpose of the article is to determine the main parameters of iron ore raw materials and establish their influence on the fine 

screening process using mathematical modeling methods. The process of fine screening is considered as a complex stochastic 

object, the behavior of which is due to the presence of numerous random factors. To solve this problem, the methods of 

probability theory and mathematical statistics were used, which made it possible to formalize the stochasticity of the input flow 

of the ore charge by setting its distribution density and estimate the fractional composition of the flow. In the course of the 

study, formulas are obtained for calculating the separation characteristics of a fine screening sublattice product, taking into 

account the parameters of the input raw material and process modes. Using the O.M. Tykhonov model made it possible to 

describe the distribution density of the sublattice separation characteristic as a random variable that depends both on the 

characteristics of the input random flow and on the properties of the process itself. Simulation modeling using the RRSB 

distribution was performed, which confirmed the adequacy of the mathematical description and showed the prospects of 

applying the proposed approach to practical problems of magnetite quartzite enrichment. Based on the results, the directions 

of further research are formulated, in particular: the need to expand the mathematical model by introducing additional 

parameters (solid density, pulp density, etc.), conducting experimental studies to form a statistical base and check the adequacy 

of the model in practice. The results obtained create the basis for improving the efficiency of fine screening processes and 

improving technologies for processing iron ore raw materials. 

Keywords: screen performance; screen efficiency; particle size; separation characteristic; mathematical model; sieving 

probability; distribution density; integral function; mathematical expectation; variance; root-mean-square deviation. 
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