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Використання методів математичного програмування під час проєктування 

технологічних комплексів та планування гірничих робіт на кар’єрах 
 

У статті розглянуто актуальність та методологічні основи застосування методів 

математичного програмування для оптимізації проєктування технологічних комплексів та 

планування гірничих робіт при відкритій розробці родовищ рудних і нерудних корисних копалин. 

Описано вимоги до проєктування технологічних комплексів і технологічних потоків на кар’єрах. 

Проаналізовано ключові проблеми під час проєктування технологічних комплексів, такі як 

мінімізація витрат на видобування (екскавацію), транспортування, переробку та збагачення, з 

урахуванням обмежень на ресурси, екологічні норми та геологічні особливості. Розглянуто 

основні методи математичного програмування: лінійне, нелінійне, динамічне, стохастичне та 

цілочисельне програмування, які дозволяють вирішувати багатофакторні завдання з метою 

мінімізації собівартості, максимізації продуктивності та забезпечення раціонального 

використання ресурсів протягом усього терміну служби кар’єру. Висвітлено переваги та 

обмеження різних методів математичного програмування в контексті проєктування кар’єрних 

технологічних комплексів.  

Ключові слова: проєктування; математичне програмування; кар’єрні технологічні 

комплекси; гірничі комплекси; оптимізація транспортних робіт; оптимізаційні моделі. 

 

Вступ. Технологічний комплекс кар’єру – це технологічно пов’язана сукупність машин, механізмів, 

споруд та установок, що забезпечують виконання всіх технологічних операцій з видобутку корисних 

копалин відкритим способом, від виймання гірничої маси до її транспортування та збагачення. Весь 

технологічний комплекс кар’єру може бути поділений на окремі технологічні потоки – також технологічно 

пов’язані сукупності гірничих машин і транспорту певної продуктивності, які незалежно виконують 

розробку певної зони кар’єру з виконанням усіх технологічних процесів, починаючи з підготовки гірських 

порід до виймання і закінчуючи відвалоутворенням, складуванням або передачею корисних копалин 

споживачу.  

І технологічний комплекс кар’єру в цілому, і окремі технологічні потоки включають в себе бурове, 

зарядне та екскаваційне (вибійне) обладнання, засоби транспорту, різне допоміжне обладнання 

(наприклад, для відвалоутворення, для складування, переміщення та обслуговування електро- і 

транспортних комунікацій тощо) та обладнання для переробки та збагачення добутої сировини. Все це 

обладнання має бути взаємопов’язаним між собою за продуктивністю та іншими параметрами для 

забезпечення надійності, високої продуктивності і безперебійності виробничого процесу. Оскільки гірничі 

комплекси сформовані з різних гірничих машин, то вони доволі часто можуть бути неправильно підібрані 

одна до одної і можуть використовуватися не досить ефективно через непогодженість або невідповідності 

параметрів окремих машин один одному та неповної відповідності машин властивостям гірських порід, 

що розроблюються. Причому втрати продуктивності і відповідно економічні витрати зростають зі 

збільшенням потужності обладнання. 

Аналіз останніх досліджень та публікацій, на які спираються автори. Значний внесок у розвиток 

теоретичних основ оптимізації виробничих процесів зробили Л.В. Канторович і Дж.Б. Данциг, які 

створили базу для лінійного та цілочислового програмування. Основні математичні рівняння та моделі для 

встановлення кінцевих контурів кар’єру, оптимізації граничного вмісту руди та планування видобувних 

робіт наведені у роботі Дж.Гітірія [1]. У праці Р.Андервуда та Б.Толвінського [2] запропоновано алгоритм 

мережевого потоку для пошуку методами математичного програмування оптимальних контурів кар’єру за 

умови максимізації різниці між загальною вартістю видобутої руди та загальною вартістю видобутку руди 

та відходів. У дослідженні Т.Лагоса та М.Армстронг та ін. [3] представлено адаптивну стохастичну модель 

оптимізації для багатоперіодного планування виробництва на відкритих кар’єрах в умовах геологічної 

невизначеності рудних запасів, використовуючи змішане цілочисельне програмування (МІП) для 

оптимізації технологічних комплексів. 

У сучасних роботах увага приділяється інтеграції методів математичного програмування з системами 

штучного інтелекту, цифрового та імітаційного моделювання, геоінформаційними технологіями та 

програмними продуктами для оптимізації виймально-транспортних і переробних процесів [6–9]. Деякі 
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алгоритми для проєктування оптимальних контурів кар’єру (наприклад, 2D- і 3D-алгоритми Лерча-Гроссмана, 

теорія граничних вмістів Лейна тощо), відомі вже тривалий час і реалізовані в комерційному програмному 

забезпеченні, такому як MaxiPit, Maptek™, Minemax, Minesight, GEOVIA Surpac™, Talpac та ін. [1]. 

Метою роботи є підвищення ефективності проєктування технологічних комплексів і потоків та 

планування гірничих робіт на кар’єрах рудних і нерудних корисних копалин за рахунок застосування 

методів математичного програмування для оптимізації параметрів видобутку, транспортування та 

переробки гірничої маси. 

Викладення основного матеріалу. Під час формування технологічних комплексів і потоків у 

конкретних умовах можливі численні поєднання бурозарядного, виймально-навантажувального, 

транспортного, відвального і допоміжного обладнання, а також обладнання для переробки корисних 

копалин. Найкращим варіантом буде той варіант, який повністю відповідає природним умовам, вимогам 

ефективної та безпечної технології гірничих робіт і забезпечує необхідну продуктивність. Сукупність 

технологічних ланок може бути подана, наприклад, у вигляді мережевої моделі (графа), де вузли 

відповідають технологічним операціям, а дуги – потокам породи (корисних копалин – руди, розкривних 

порід чи гірничої маси) між ними. 

Критерієм при виборі обладнання та формування технологічних комплексів і потоків можуть бути: 

 у загальному випадку – мінімум експлуатаційних витрат; 

 при проєктуванні розкриття кар’єрного поля – мінімум капітальних витрат і експлуатаційних 

витрат на транспорт; 

 під час проєктування системи і порядку розробки горизонтів – оптимальний поточний коефіцієнт 

розкриву з урахуванням безпечного і планомірного ведення гірничих робіт. 

Традиційні методи проєктування, засновані на нормативних показниках та інженерній інтуїції 

(наприклад, метод варіантів або енергетичний метод), часто не дозволяють досягти глобального оптимуму 

через складність та велику кількість взаємозалежних технічних, технологічних і економічних змінних і 

обмежень. Математичне програмування надає строгий інструментарій для кількісного моделювання цих 

взаємозв’язків і знаходження оптимальних параметрів. Тому у сучасних умовах цифровізації гірничого 

виробництва все більшого значення набувають методи математичного програмування, які дозволяють 

створювати формалізовані моделі оптимізації технологічних процесів, мінімізувати витрати та 

забезпечити максимальну продуктивність системи при дотриманні заданих обмежень. І використання 

методів математичного програмування стає необхідним інструментом для прийняття оптимальних рішень 

під час проєктування та управління гірничими підприємствами.  

Оптимізаційна задача може бути сформульована як оптимізаційна модель з мінімізації сумарних 

витрат, енергії або часу виробничого циклу 

min 𝑍 = ∑𝑐𝑖𝑥𝑖

𝑛

𝑖=1

, (1) 

де Z – цільова функція (загальні витрати або енергоспоживання); 

ci – питомі витрати на виконання операції (виймання, транспортування, дроблення, складування тощо); 

xi – змінні, що характеризують параметри окремих технологічних процесів (обсяги робіт або ресурсів, 

що витрачаються на i-ту операцію, кількість техніки, швидкість транспортування тощо); 

n – кількість технологічних процесів. 

Також до моделі вводиться система обмежень, яка може містити обмеження чи матриці обмежень по: 

 продуктивності обладнання і гірничих машин та їх сумісності; 

 граничних обсягах запасів корисних копалин (руди) та їх якості; 

 пропускній здатності транспортних комунікацій; 

 об’єму кузова (платформи) транспортних засобів; 

 технологічній послідовності операцій; 

 енергетичних лімітах, ліміту інвестицій, ціні на сировину; 

 інших обмеженнях. 

Для розв’язання різних задач оптимізації можуть бути використані різні методи математичного 

програмування. 

Лінійне програмування. Його задачами є знаходження екстремуму лінійної цільової функції на 

допустимій безмежності значень аргументів, використовується для вирішення т. зв. задач розподілу (задачі 

планування та постачання – визначення оптимального розподілу ресурсів між процесами при лінійних 

залежностях витрат, найвідомішим прикладом є транспортна задача) та задач про суміші (найбільш 

ефективне створення суміші, що відповідає певним вимогам, з різних компонентів, що відрізняються за 

технологічними (фізичними, хімічними тощо) властивостями. Ці задачі використовуються для планування 

видобувних робіт у режимі усереднення якості). Ці задачі актуальні як для рудних кар’єрів (усереднення 

руд з різних вибоїв для отримання руди з заданим вмістом корисних і/або шкідливих компонентів), так і 
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для кар’єрів нерудних будівельних матеріалів, де кінцевий продукт (наприклад, щебінь різних фракцій) 

формується після сортування та має різні ціну, що вимагає гнучкого планування вантажопотоків. 

Математична модель при лінійному програмуванні звичайно така [5]: 

min 𝑍 = ∑𝑐𝑖𝑗𝑥𝑖𝑗

𝑛

𝑖=1

, (2) 

де xij – обсяги робіт або ресурсів, що направляться з i-го джерела (наприклад, кар’єру, вибою, дробарки) 

до j-го споживача (фабрики, цеху, конвеєру); 

cij – питомі витрати ресурсів чи вартість відповідних робіт на виконання операції. 

Нелінійне програмування – різновид математичного програмування, у якому цільовою функцією чи 

обмеженнями є нелінійна функція. Використовується для моделювання енергетичних та технологічних 

залежностей, які у реальних умовах кар’єру не є лінійними (наприклад, витрата палива залежно від 

навантаження). Математична модель може бути такою: 

min 𝑍 = ∑(𝑎𝑖𝑥𝑖
2 + 𝑏𝑖𝑥𝑖 + 𝑐𝑖)

𝑛

𝑖=1

, (3) 

де ai, bi, ci – коефіцієнти, що описують нелінійну залежність витрат від обсягу робіт. 

Прикладом є задача визначення оптимальної кількості екскаваторів E, автосамоскидів T і дробильних 

установок D, при якій мінімізується сумарна собівартість: 

𝐹 = 𝑐𝑒𝐸
0.9 + 𝑐𝑡𝑇

1.1 + 𝑐𝑑𝐷
0.8 + 𝑐𝑒𝑡(𝐸 ∙ 𝑇)0.5, (4) 

де показники ступенів відображають нелінійні залежності між кількістю техніки та питомими витратами 

(наприклад, зниження ефективності при перевантаженні або недовантаженні системи). 

Цілочисельне лінійне програмування – всі або частина змінних повинні приймати тільки 

цілочисельні значення, а цільова функція і функції, що входять в обмеження, – лінійні. Тобто це така 

нелінійна задача, яка могла б бути лінійної, якби не вимоги цілочисельності ряду змінних. Вона дозволяє 

при визначенні оптимальної кількості машин кожного типу враховувати дискретність вибору технічних 

засобів (кількість екскаваторів, самоскидів, дробарок тощо може бути лише цілим числом). Модель 

дозволяє вибрати комбінацію обладнання, яка забезпечить задану річну продуктивність при мінімальних 

сумарних витратах, враховуючи простої, коефіцієнти технічної готовності та їх сумісність. Типова 

математична модель така [5]: 

min 𝑍 = ∑𝑐𝑘𝑥𝑘

𝑛

𝑖=1

; 

𝐴𝑥 + 𝐵 = 0,  𝑥 ≥ 0, хk – цілі числа, 𝑘 ∈ 𝐽, k £ J, 

(5) 

де xk – кількість одиниць техніки типу k; 

ck – питомі витрати на її експлуатацію; 

J – множина значень індексу k, що відповідають цілочисельним змінним. 

Їх прикладами є задачі: 

• розподілу трудових ресурсів і обладнання, планування дискретного виробництва, інші задачі зі 

змінними, що позначають кількість неподільних ресурсів або продукції; 

• вибору одного з декількох варіантів, де змінні (всі або лише їх частина) можуть приймати 

значення, рівне лише «0» або «1» (якщо «0», то відповідний варіант відкидається, якщо «1» – приймається). 

Такі моделі дають змогу встановити мінімальний склад технічних засобів, необхідних для 

забезпечення заданої продуктивності комплексу. 

Реальні умови експлуатації кар’єрів характеризуються високим рівнем невизначеності, точному 

прогнозуванню не піддається значна кількість факторів, наприклад, зміна фізико-механічних властивостей 

гірських порід та якості руди у межах родовища, коливання добових обсягів видобутку, непередбачувані 

простої обладнання, впливи кліматичних і сезонних умов (погодні умови, промерзання, зволоження порід). 

У таких умовах використання детермінованих моделей лінійного чи нелінійного програмування може 

призвести до неточних або неусталених рішень. Для врахування випадкових коливань параметрів у 

процесі проєктування застосовується стохастичне програмування, яке враховує невизначеність у 

параметрах моделі через імовірнісні розподіли [6, 8]. Його математична модель: 

min𝐸 [𝐹(𝑥, 𝜉)], (6) 

де x – вектор керованих змінних (наприклад, кількість екскаваторів, автосамоскидів, обсяги видобутку за 

ділянками); 

ξ – випадковий вектор параметрів (вартості палива, коефіцієнта продуктивності техніки, погодних умов 

тощо). 

Цільова функція E[F(x, ξ)] відображає очікуване (середнє) значення витрат або іншого критерію 

ефективності. І замість пошуку єдиного «оптимального» рішення для фіксованих параметрів, стохастичні 
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моделі визначають рішення, стійке до змін зовнішніх умов, тобто дозволяють мінімізувати очікувані 

втрати при будь-яких сценаріях розвитку подій. 

Динамічне програмування – дозволяє здійснити оптимальне планування багатокрокових керованих 

процесів і процесів, які змінюються у часі (наприклад, при поглибленні кар’єру або зміні конфігурації 

транспортних шляхів). Воно ефективно використовується для оптимізації поетапного розвитку кар’єру та 

календарного планування гірничих робіт, дозволяє знайти найкращу послідовність виймання блоків руди 

та пустих порід протягом багатьох років, максимізуючи накопичені приведені доходи чи мінімізуючи 

накопичені приведені витрати. На кожному етапі (наприклад, кожного року) приймається рішення про 

розкриття певних вибійних блоків з врахуванням балансу між необхідною якістю руди та мінімумом 

витрат на перевезення розкриву. Типова математична модель [5]: 

fN(x) = max [qN(yN) + fN–1 (x–yN)] 

0 ≤ yN ≤ x 
, 

(7) 

де f – цільова функція (максимум доходу чи об’єму продукції, або мінімум витрат); 

N – число стадій, які ще потрібно пройти у процесі; 

х – стан системи на даній стадії N; 

yN – керуюча змінна.  

fN(x) є результуючим значенням f, яке може бути отримане за N стадій процесу, що залишилися, 

починаючи із стану х, якщо слідувати принципу оптимальності. У загальному випадку ліва частина 

формули дорівнює не виразу в квадратних дужках у правій частині рівняння, а його максимальному 

значенню. Максимізація досягається підбором потрібного значення yN в межах від 0 до х [5]. 

Найкращі результати можуть бути досягнуті при інтеграції різних методів математичного 

програмування в єдину модель, коли на різних етапах кожен з методів вирішує поставлені перед ним 

завдання. Наприклад: 

1) при проєктуванні кар’єру: 

 використання динамічного програмування для визначення оптимальної виробничої потужності 

кар’єру та оптимального контуру кар’єру; 

 використання нелінійного програмування для пошуку оптимальних параметрів транспортних 

шляхів на кар’єрі (кутів ухилу, довжини трас, кількості перегонів); 

 використання цілочисельного лінійного програмування або нелінійного програмування для 

вибору оптимального складу обладнання (екскаваторів, транспортних засобів, конвеєрів, дробарок) за 

умови його сумісності; 

2) при календарному і поточному плануванні гірничих робіт: 

 використання динамічного програмування для вибору оптимального режиму гірничих робіт; 

 використання лінійного програмування для оперативного розподілу обсягів робіт та 

вантажопотоків; 

 використання нелінійного програмування для більш точного розрахунку експлуатаційних витрат 

з нелінійними залежностями зміни (наприклад, витрата палива від ухилу дороги та завантаження 

самоскида); 

 використання стохастичного програмування для оптимізації графіку роботи транспорту при 

випадкових простоях техніки або змінах продуктивності; 

 використання стохастичного програмування для планування видобувних робіт у зонах з 

нестабільною якістю сировини. 

Висновки: 

1. Методи математичного програмування є ефективним інструментом для проєктування 

технологічних комплексів на кар’єрах, забезпечуючи економію та стійкість. Також вони дозволяють 

інтегрувати дані GIS і AI для динамічної оптимізації; 

2. Математичні моделі дозволяють визначати оптимальні співвідношення між виробничими ланками 

(наприклад, вибір оптимальних схем транспортування гірничої маси, балансування продуктивності 

екскаваторів, дробарок і конвеєрів, розподіл енергетичних і трудових ресурсів, оцінки впливу динаміки у 

геометрії кар’єру на загальні витрати), їх застосування під час проєктування технологічних схем дає змогу 

мінімізувати непродуктивні простої, зменшити транспортні витрати та забезпечити збалансоване 

навантаження всіх елементів комплексу; 

3. Сучасні програмні засоби, такі як GAMS (General Algebraic Modeling System), MATLAB, Python 

(SciPy, PuLP), надбудова Excel Solver («Пошук рішення»), а також спеціалізовані системи MineSched, 

Datamine Studio, Surpac, Micromine, MINVEST [9] дозволяють автоматизувати побудову математичних 

моделей і виконувати багатоваріантні розрахунки з урахуванням техніко-економічних факторів; 

4. Подальший розвиток використання методів математичного програмування пов’язаний з все 

більшим впровадженням стохастичного програмування для моделювання невизначеності (зміни цін, 

поломки обладнання, неоднорідності рудного тіла) та інтеграції моделей математичного програмування в 

автоматизовані системи управління гірничим підприємством у реальному часі. 
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Iskov S.S., Shlapak V.O., Kalchuk S.V., Kryvoruchko A.O. 

Use of mathematical programming methods in the design of technological complexes and planning of mining 

operations in open-pit mines 

The article examines the relevance and methodological foundations of applying mathematical programming methods for 

optimizing the design of technological complexes and the planning of mining operations in open-pit development of ore and 

non-ore mineral deposits. The requirements for designing technological complexes and process flows in open-pit mines are 

described. The key challenges in designing technological complexes are analyzed, including the minimization of costs for 

extraction, transportation, processing, and beneficiation, while taking into account resource constraints, environmental 

regulations, and geological features. The main mathematical programming methods are reviewed: linear, nonlinear, dynamic, 

stochastic, and integer programming, which allow for solving multifactor optimization problems aimed at minimizing 

production costs, maximizing productivity, and ensuring the rational use of resources throughout the mine’s operational life. 

The advantages and limitations of various mathematical programming methods in the context of designing open-pit 

technological complexes are highlighted. 

Keywords: design; mathematical programming; open-pit technological complexes; mining complexes; optimization of 

transport operations; optimization models. 
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