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Марківська апроксимація трафіку мережі  

за рахунок моделей із прихованими станами 
 

У статті представлено новий підхід до апроксимації мережевого трафіку з використанням 

моделей із прихованими станами. Однією з ключових проблем у телекомунікаційних системах є 

складна кореляційна структура вхідних потоків, яка ускладнює аналіз їх продуктивності. 

Для подолання цієї проблеми застосовується марківська апроксимація немарківського трафіку, 

що дозволяє відтворювати властивості реальних потоків. Основою такого підходу є моделі 

марківських процесів із модульованою інтенсивністю (MMPP), які описують змінність 

інтенсивності пакетних потоків за рахунок прихованого марківського процесу. 

Модель MMPP ґрунтується на пуассонівському процесі, інтенсивність якого визначається 

переходами між станами марківського ланцюга. У роботі подано математичну формалізацію 

цієї моделі, включно з побудовою матриці переходів та визначенням параметрів інтенсивності 

для кожного стану. Це створює можливість гнучко керувати поведінкою трафіку в умовах 

змінного навантаження та відтворювати статистичні характеристики, зокрема 

автокореляцію. 

Особлива увага приділяється питанням налаштування параметрів MMPP. Для цього 

застосовуються методи оцінки, що базуються на аналізі експериментальних даних. 

Використання рівнянь Колмогорова – Чепмена дозволяє обчислювати ймовірності перебування в 

різних станах та визначати середні інтенсивності потоків. Важливим аспектом є вибір 

кількості станів у марківському ланцюзі, оскільки саме від цього залежить точність 

апроксимації. 

Практична значущість підходу проявляється у сфері мультимедійних і відеопотоків, де 

традиційні моделі не враховують змінності навантаження. Використання MMPP забезпечує 

адекватне відображення пікових та низькоінтенсивних режимів роботи мережі, що дає змогу 

оптимізувати їх функціонування. У статті наведено приклади апроксимації реальних даних, які 

підтверджують ефективність моделі. 

Ключові слова: марківська апроксимація; інтенсивність потоку; моделювання трафіку; 

математичні інструменти; метод; модель; телекомунікаційна система. 

 

Актуальність теми. Марківська апроксимація немарківського трафіку є ключовим методом аналізу 

та моделювання складних мережевих процесів. У сучасних телекомунікаційних системах трафік 

характеризується високим рівнем варіативності, автокореляцією та нестабільністю потоків даних. 

Традиційні моделі, засновані на незалежних випадкових процесах, не завжди дозволяють адекватно 

описати реальні потоки інформації, що циркулюють у комп’ютерних мережах. Саме тому виникає 

необхідність у застосуванні методів, які можуть коректно відтворювати стохастичні характеристики 

трафіку та забезпечувати більш точний аналіз продуктивності мереж. 

Одним із найбільш ефективних підходів до апроксимації немарківського трафіку є марківські процеси 

з модульованою інтенсивністю (MMPP – Markov Modulated Poisson Process). Ця модель дозволяє 

враховувати змінність інтенсивності потоку даних та його кореляційні властивості, що особливо важливо 

для аналізу відеострумів, VoIP-телефонії та інших видів мультимедійного трафіку. Використання MMPP 

дає змогу адаптувати математичні моделі до реальних мережевих умов, що покращує точність 

прогнозування навантаження на мережу та оптимізує її використання. 

Реальні телекомунікаційні системи піддаються впливу різних факторів, які призводять до 

нерівномірного розподілу інтенсивності передавання пакетів у часі. У таких випадках традиційні 

пуассонівські моделі не дають достатньо точних результатів, оскільки вони не враховують короткочасну 

залежність між подіями. Натомість MMPP дозволяє моделювати різні рівні навантаження та їхні 

коливання шляхом зміни станів марківського ланцюга. Це забезпечує більш гнучке налаштування моделі 

під конкретні мережеві умови та покращує її здатність відображати реальний трафік. 

Метод MMPP базується на використанні матричних рівнянь, які описують процес зміни станів 

марківського ланцюга та ймовірності перебування системи в певному стані. Ці рівняння дозволяють 

визначити основні характеристики трафіку, такі як середня швидкість прибуття пакетів, ймовірність 

виникнення періодів високого або низького навантаження та ступінь автокореляції. Коректний вибір 
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параметрів моделі є важливим кроком у забезпеченні її ефективності, тому в статті також розглядаються 

методи оцінки параметрів на основі реальних даних про трафік. 

Застосування MMPP є особливо актуальним у сучасних високошвидкісних мережах, де ефективне 

управління ресурсами та мінімізація затримок відіграють важливу роль. Зокрема, така апроксимація 

використовується для аналізу роботи мобільних мереж 5G, Інтернету речей (IoT) та інтелектуальних 

систем управління трафіком. Оптимізація цих процесів дозволяє зменшити затримки передавання даних, 

збільшити пропускну здатність мережі та підвищити якість обслуговування користувачів. 

Таким чином, у цій статті розглядаються основи застосування MMPP для апроксимації немарківського 

трафіку, описуються математичні принципи моделі, методи визначення її параметрів та практичні аспекти 

її використання в сучасних телекомунікаційних системах. Аналіз переваг та недоліків підходу дозволить 

визначити його придатність для конкретних мережевих середовищ та оцінити ефективність у контексті 

сучасних інформаційних технологій. 

Сучасні телекомунікаційні мережі стикаються з постійно зростаючими вимогами до продуктивності, 

гнучкості та ефективності управління трафіком. Збільшення кількості користувачів, розвиток 

мультимедійного контенту, впровадження технологій 5G та IoT призводять до значного ускладнення 

структури потоків даних. У таких умовах використання традиційних стохастичних моделей стає 

недостатнім для точного аналізу та прогнозування поведінки мереж. Це зумовлює необхідність розробки 

та застосування нових методів апроксимації, які здатні коректно описувати реальний трафік із властивими 

йому залежностями та автокореляцією. 

Марківські процеси з модульованою інтенсивністю (MMPP) є одним із найбільш перспективних 

підходів до моделювання трафіку в сучасних мережах. Їхня актуальність пояснюється здатністю 

адаптуватися до змінних умов навантаження, що особливо важливо для відеострумів, голосового зв’язку 

через IP (VoIP), хмарних сервісів і розподілених обчислень. Використання таких моделей дозволяє 

операторам мереж визначати оптимальні параметри обслуговування трафіку, знижувати ймовірність 

перевантажень і підвищувати загальну якість послуг. 

Особливої актуальності цей підхід набуває в контексті розвитку 5G-мереж і майбутніх поколінь 

телекомунікаційних систем. Висока щільність пристроїв у мережах нового покоління, різнорідність 

трафіку та динамічна зміна умов передачі даних вимагають більш гнучких і точних методів аналізу. 

Використання MMPP дозволяє ефективно прогнозувати навантаження, визначати оптимальні стратегії 

розподілу ресурсів і адаптувати мережеву інфраструктуру до змінних умов експлуатації. 

Актуальність дослідження також підтверджується зростанням інтересу до автоматизованих методів 

аналізу трафіку, враховуючи машинне навчання та алгоритми штучного інтелекту. Поєднання класичних 

марківських моделей із сучасними алгоритмами оптимізації відкриває нові можливості для побудови 

інтелектуальних систем управління трафіком, які здатні адаптивно змінювати параметри мережі в режимі 

реального часу. 

Таким чином, розгляд методів апроксимації немарківського трафіку за допомогою MMPP є 

надзвичайно важливим у контексті сучасних тенденцій розвитку телекомунікаційних систем. 

Це дослідження дозволяє не лише покращити розуміння роботи складних мережевих процесів, але й 

сприяти розробці нових ефективних рішень для оптимізації їхньої продуктивності та якості 

обслуговування. 

Аналіз останніх досліджень та публікацій, на які спираються автори. Марківська апроксимація 

немарківського трафіку використовується для спрощення аналізу систем із залежностями та кореляціями 

в часі. Це дозволяє моделювати складні процеси передачі даних у мережах, забезпечуючи більш точне 

прогнозування та оптимізацію їхньої роботи [1].  

Одним із підходів є використання марківських моделей з фіксованим числом станів (Finite-State 

Markov Models, FSMM). У цьому випадку немарківський трафік апроксимується дискретною марківською 

моделлю, де кожен стан відповідає певним характеристикам трафіку, наприклад, швидкості потоку або 

рівню завантаженості. Це дозволяє спростити аналіз та управління мережею, розбиваючи складні процеси 

на більш керовані стани [2]. 

Іншим підходом є використання марківських моделей з фазовим розподілом (Phase-Type Distributions, 

PH-type). Ці моделі застосовують комбінації експоненційних розподілів для апроксимації складних 

розподілів часу прибуття або тривалості пакетів. Це забезпечує гнучкість у моделюванні різних типів 

трафіку та дозволяє враховувати його стохастичну природу [3]. 

Марківські моделі другого порядку (MMPP – Markov Modulated Poisson Process) характеризуються 

тим, що інтенсивність потоку змінюється відповідно до прихованого марківського процесу. Це дозволяє 

апроксимувати трафік із змінною інтенсивністю, що характерно для відео- або мультимедійних потоків. 

Такий підхід забезпечує більш точне відтворення реальних умов роботи мережі та покращує якість 

обслуговування користувачів [4]. 

У прихованих марківських моделях (Hidden Markov Models, HMM) реальні стани трафіку приховані, 

а спостерігаються лише вихідні дані. Це дозволяє апроксимувати складні стохастичні процеси, де пряме 
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спостереження за станами неможливе або утруднене. HMM широко використовуються в задачах 

розпізнавання образів та обробки сигналів, що робить їх корисними для аналізу мережевого трафіку [5]. 

Когортно-марківські процеси (Batch Markovian Arrival Processes, BMAP) застосовуються для 

апроксимації трафіку, де пакети прибувають у групах (когортах), наприклад, у трафіку відеоконференцій. 

Це дозволяє моделювати ситуації, коли дані передаються не поодинці, а пакетами, що є важливим для 

сучасних мережевих додатків [6]. 

Марківський процес прибуття (Markovian Arrival Process, MAP) є узагальненням MMPP, що дозволяє 

більш точно апроксимувати трафік із короткочасними залежностями та автокореляцією. Це забезпечує 

гнучкість у моделюванні різних типів трафіку та покращує точність аналізу мережевих процесів [7]. 

Загалом методи апроксимації немарківського трафіку на основі марківських моделей дозволяють 

отримати зручні математичні представлення для аналізу продуктивності мереж та оптимізації систем 

керування трафіком [8–12]. 

Метою статті є розробка та аналіз методу апроксимації немарківського трафіку на основі марківських 

процесів із модульованою інтенсивністю (MMPP) для підвищення точності моделювання динамічних 

потоків даних у телекомунікаційних мережах. Дослідження спрямоване на виявлення можливостей 

застосування цього підходу для аналізу продуктивності мереж, оптимізації їхньої роботи та прогнозування 

змін у навантаженні. 

Для досягнення поставленої мети необхідно вирішити такі основні завдання: 

- провести аналіз існуючих методів апроксимації немарківського трафіку та визначити їхні основні 

обмеження; 

- дослідити математичні основи MMPP, сформулювати основні рівняння, що описують цей процес, 

та визначити його ключові параметри; 

- розробити методику оцінки параметрів MMPP на основі реальних статистичних даних про трафік, 

використовуючи матричні методи та алгоритми оптимізації; 

- виконати моделювання різних сценаріїв мережевого трафіку із застосуванням MMPP та провести 

порівняльний аналіз впливу на показники QoS; 

- розробити рекомендації щодо практичного використання MMPP у задачах прогнозування 

навантаження та адаптивного керування мережевими ресурсами. 

Виконання цих завдань дозволить сформувати науково обґрунтовану методику апроксимації трафіку 

та оцінити її ефективність у контексті сучасних телекомунікаційних технологій. 

Викладення основного матеріалу. Математичний опис MMPP: рівняння та ключові параметри. 

Марківські процеси з модульованою інтенсивністю (MMPP) є одним із основних методів апроксимації 

немарківського трафіку, що дозволяє враховувати змінність інтенсивності потоків у часі. Вони базуються 

на двох ключових компонентах: прихованому марківському процесі та пуассонівському потоці, 

інтенсивність якого змінюється відповідно до стану марківського ланцюга. 

Формальне визначення MMPP полягає у тому, що MMPP – це пуассонівський процес, модульований 

скінченним ергодичним марківським ланцюгом із 𝑁 станами. Нехай: 𝑋(𝑡) – прихований марківський 

процес, що приймає значення у множині станів {1, 2, … , 𝑁}, 𝛬 = {𝜆1, 𝜆2, . . . , 𝜆𝑁} – набір параметрів 

інтенсивності пуассонівських потоків для кожного стану, 𝑄 – матриця генератора марківського процесу, 

що визначає ймовірності переходів між станами. Інтенсивність пуассонівського потоку змінюється 

відповідно до поточного стану 𝑋(𝑡), що означає: 

𝑃( 𝑁(𝑡 + 𝛥𝑡) − 𝑁(𝑡) = 𝑘 ∣ 𝑋(𝑡) = 𝑖)   =  
(𝜆𝑖𝛥𝑡)

𝑘

𝑘!
 𝑒−𝜆𝑖𝛥𝑡  , 𝑘 ≥ 0, (1) 

де 𝜆𝑖 – інтенсивність прибуття пакетів у стані 𝑖. 
Своєю чергою динаміка марківського ланцюга 𝑋(𝑡) визначається матрицею переходів 𝑄, елементи якої 

𝑞𝑖𝑗  позначають ймовірність переходу між станами 𝑖 та 𝑗: 

𝑄 = [

𝑞11 𝑞12 … 𝑞1𝑁
𝑞21 𝑞22 … 𝑞2𝑁
⋮ ⋮ ⋱ ⋮
𝑞𝑁1 𝑞𝑁2 … 𝑞𝑁𝑁

], (2) 

де 𝑞𝑖𝑖 = −∑ 𝑞𝑖𝑗𝑖≠𝑗 , що забезпечує нормування ймовірностей переходів, а 𝑞𝑖𝑗  для 𝑖 ≠ 𝑗 визначає швидкість 

переходу між станами. 

Ймовірність того, що процес перебуває у стані 𝑖 в момент часу 𝑡, визначається вектором ймовірностей 

станів 𝜋(𝑡), який задовольняє рівняння Колмогорова: 
𝑑𝜋(𝑡)

𝑑𝑡
= 𝜋(𝑡)𝑄. (3) 

У стаціонарному режимі стаціонарний вектор розв’язує рівняння: 

𝜋𝑄 = 0,    ∑ 𝜋𝑖 

𝑁

𝑖 = 1

,  (4) 
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де 𝜋 = (𝜋1, 𝜋2, … , 𝜋𝑁) – вектор стаціонарних ймовірностей перебування у кожному стані. 

Далі, знаючи стаціонарні ймовірності, середня інтенсивність вхідного потоку трафіку визначається як: 

𝜆𝑎𝑣𝑔 = ∑ 𝜋𝑖 𝜆𝑖

𝑁

𝑖 = 1

. (5) 

Ця величина використовується для аналізу середнього навантаження на систему та оцінки її 

продуктивності. 

Автокореляційна функція процесу MMPP може бути виражена через експоненційні компоненти: 

𝑅(𝜏) = 𝜆𝑎𝑣𝑔 + ∑ 𝑐𝑖𝑒
−
∣𝜏∣
𝑇𝑖

𝑁

𝑖 = 1

, (6) 

де 𝑇𝑖  – характерний час зміни стану, а 𝑐𝑖 – коефіцієнти, що залежать від інтенсивностей переходів, параметр 

𝜏 позначає часовий лаг (затримку) між двома моментами часу, у яких аналізується кореляція інтенсивності 

потоку. 

Оцінка параметрів MMPP зазвичай здійснюється методами максимального правдоподібності або 

методами моментів, які включають аналіз емпіричних даних трафіку для визначення матриці переходів 𝑄, 

налаштування інтенсивностей 𝜆𝑖 таким чином, щоб середні значення та дисперсія потоку відповідали 

спостережуваним характеристикам, а також оптимізацію параметрів за допомогою алгоритмів мінімізації 

похибки апроксимації. 

Модель MMPP є потужним інструментом для апроксимації немарківського трафіку, оскільки вона 

дозволяє моделювати змінну інтенсивність потоку, зберігаючи при цьому простоту марківських процесів. 

Використання рівнянь Колмогорова, матричних рівнянь та автокореляційної функції дозволяє коректно 

налаштовувати параметри MMPP та забезпечує точну апроксимацію реального трафіку в сучасних 

мережах. 

Побудова марковської моделі немарковського потоку. 

Реальний немарковський вхідний потік може бути розщеплено на елементарні складові, кожна з яких 

може бути описана розподілом Ерланга належного порядку. Ця важлива обставина дає змогу здійснити 

марковську апроксимацію кожної зі складових композиційного потоку. Розглянемо відповідну технологію 

стосовно випадку, коли вхідний потік є потоком Ерланга другого порядку. Цей потік формується, якщо 

звичайний пуассонівський потік (це потік Ерланга першого порядку) просіяти, виділивши кожну другу 

подію. При цьому можна умовно вважати, що непарна подія потоку не змінює стану системи, готуючи 

перехід, який реалізується при надходженні чергової парної події. Більш докладно: перехід системи з 

поточного стану в черговий здійснюється за два кроки. При цьому на першому кроці система переходить 

із поточного стану в деякий фіктивний, буферний, проміжний стан, а на другому кроці – у черговий 

істинний стан. По суті можна вважати, що реальний ерлангівський потік вкладений у фіктивний 

пуассонівський потік. 

Таким чином, завдяки подвоєнню числа станів вихідної немарковської системи будується марковська 

система з пуассонівським вхідним потоком. Якщо тепер у цій отриманій системі виділяти й аналізувати 

тільки переходи в парні її стани, то поведінка системи відповідатиме поведінці вихідної системи, на вхід 

якої надходить потік Ерланга другого порядку. 

Розглянемо n-канальну систему масового обслуговування з відмовами, на вхід якої надходить потік 

Ерланга другого порядку, одержуваного внаслідок просіювання пуассонівського потоку інтенсивності λ, а 

тривалість обслуговування розподілена експоненціально з параметром μ. Для опису функціонування 

системи використовуємо граф станів, наведений на рисунку 1. 

 

 
 

Рис. 1. Граф станів і переходів системи без втрат з ерлангівським вхідним потоком  

і експоненціальним обслуговуванням 

 

На рисунку 1 зазначено, що: 

𝐸𝑘 – стан, коли в системі зайнято рівно 𝑘 каналів, 𝑘 = 0, 1, 2, . . . , 𝑛; 

𝐸𝑘, 1 – буферний стан, який відповідає ситуації, коли в системі зайнято рівно 𝑘 каналів і надійшла нова 

заявка, що буде відсіяна і тому не впливає на зміну кількості зайнятих каналів, 𝑘 = 0, 1, 2, . . ., 𝑛 − 1; 
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𝐸𝑛 + 𝑠, 1 – буферний стан, відповідний до ситуації, коли в системі зайнято рівно n каналів, у черзі 𝑠 
заявок і надійшла нова заявка, яку буде відсіяно; 

𝐸𝑛 + 𝑠 + 1 – стан, коли в системі зайнято n каналів і (s + 1) заявок перебувають у черзі; 

𝜆 – інтенсивність вхідного пуасонівського пуасонівського потоку, що просіюється; 

𝜇 – інтенсивність обслуговування. 

Для отриманого графа станів і переходів сформуємо систему лінійних алгебраїчних рівнянь щодо 

невідомих імовірностей станів системи. Система рівнянь має вигляд: 

−𝜆𝑃0 + 𝜇𝑃1 = 0, 
𝜆𝑃0 − 𝜆𝑃01 = 0, 
𝜆𝑃01 + 2𝜇𝑃2 − (𝜆 + 𝜇)𝑃1 = 0, 
𝜆𝑃1 − 𝜆𝑃11 = 0, 
𝜆𝑃11 + 3𝜇𝑃3 − (𝜆 + 2𝜇)𝑃2 = 0, 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
𝜆𝑃𝑘 − 1 − 𝜆𝑃𝑘 − 1,1 = 0, 

𝜆𝑃𝑘 − 1,1 + (𝑘 + 1)𝜇𝑃𝑘 + 1 − (𝜆 + 𝑘𝜇)𝑃𝑘 = 0, 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
𝜆𝑃𝑛−1 − 𝜆𝑃𝑛 − 1,1 = 0, 

𝜆𝑃𝑛 − 1, 1 + 𝑛𝜇𝑃𝑛 = 0, 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
𝜆𝑃𝑛+𝑠 − 𝜆𝑃𝑛 + 𝑠,1 = 0, 

𝜆𝑃𝑛 + 𝑠,1 + 𝑛𝜇𝑃𝑛 + 𝑠 + 2 − (𝜆 + 𝑛𝜇)𝑃𝑛 + 𝑠 + 1 = 0. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 

(7) 

Отримана система рівнянь чисельно розв’язується традиційними методами. 

Введемо матрицю інтенсивностей переходів (генератор процесу) A і стовпець вектор шуканих 

ймовірностей P таким чином: 

𝐴 =

(

 
 
 
 
 
 
 
 

−𝜆 0 𝜇 | |

𝜆 −𝜆 0 0 | |

0 𝜆 (𝜆 + 𝜇) 0 2𝜇 | |

0 0 𝜆 −𝜆 0 0 | |

0 0 0 𝜆 −(𝜆 + 2𝜇) 0 3𝜇 | |

|𝜆 −𝜆 |

|0 𝜆 𝑛𝜇 |

| |𝜆 −𝜆 0

| | 𝜆 −(𝜆 + 𝑛𝜇) 𝑛𝜇)

 
 
 
 
 
 
 
 

, 

𝑃𝑇 = (𝑃0  P01  P1  ...  Pk - 1, 1   P𝑘  Pk, 1  P𝑘 + 1 ...  P𝑛  ...  P𝑛 + 𝑠, 1  P𝑛 + 𝑠 + 1 ...). 

 

 

 

 

 

 

Тоді розподіл ймовірностей станів, що шукається, визначається в результаті розв’язання векторно-

матричного рівняння  𝐴𝑃 = 0, доповненого умовою нормування ∑ 𝑃𝑖𝑖 = 1. 

Незважаючи на очевидну простоту отримання рішення, таке його уявлення незручно, тому що не 

забезпечує аналітичного опису залежності ймовірностей, що шукаються, станів від параметрів завдання і 

тому не дозволяє безпосередньо оцінити їх вплив на ефективність системи обслуговування. Водночас 

система рівнянь (7) допускає отримання рішення у явному вигляді з використанням наступного 

перетворення. Підсумовуючи друге рівняння з третім, четверте з п’ятим тощо, парне з наступним 

непарним, отримаємо: 

𝜆𝑃0 − 𝜇𝑃1 = 0, 
𝜆𝑃0 + 2𝜇𝑃2 − (𝜆 + 𝜇)𝑃1 = 0, 
𝜆𝑃1 + 3𝜇𝑃3 − (𝜆 + 2𝜇)𝑃2 = 0, 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
𝜆𝑃𝑘 − 1 + (𝑘 + 1)𝜇𝑃𝑘 + 1 − (𝜆 + 𝑘𝜇)𝑃𝑘 = 0, 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
𝜆𝑃𝑛 − 1 + 𝑛𝜇𝑃𝑛  +  1 − (𝜆 + 𝑛𝜇)𝑃𝑛 = 0, 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
𝜆𝑃𝑛 + 𝑠 + 𝑛𝜇𝑃𝑛 + 𝑠 +2  − (𝜆 + 𝑛𝜇)𝑃𝑛 + 𝑠 + 1 = 0, 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 

(8) 

Введемо: 

𝑧𝑘 = 𝜆𝑃𝑘 − 1 − 𝑘𝜇𝑃𝑘,    k = 1, 2, …, n, 

𝑧𝑛 + 𝑠 = 𝜆𝑃𝑛 + 𝑠 − 1  − 𝑃𝑛 + 𝑠,    s = 1, 2,...  
(9) 

З урахуванням (9) запишемо систему (8) таким чином: 
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𝑧1 = 0, 
𝑧1 − 𝑧2 = 0, 
𝑧2 − 𝑧3 = 0, 
................. 
𝑧𝑘 − 𝑧𝑘 + 1 = 0, 
𝑧𝑛 − 𝑧𝑛 + 1 = 0, 
. . . . . . . . . . . . . . . . . 
𝑧𝑛 + 𝑠 − 𝑧𝑛 + 𝑠 + 1 = 0, 
. . . . . . . . . . . . . . . . .. 

 

 

 

 

 

 

 

 

 

Звідси 

𝑧1 = 𝑧2 =. . . = 𝑧𝑛 = 𝑧𝑛 + 1 = 𝑧𝑛 + 𝑠 = 𝑧𝑛 + 𝑠 + 1 =. . . = 0,  

або 

𝜆𝑃𝑘 − 1 − 𝑘𝜇𝑃𝑘 = 0,     𝑘 = 1, 2,. . . , 𝑛,  

𝜆𝑃𝑛 + 𝑠 − 1 − 𝑛𝜇𝑃𝑛 + 𝑠 = 0,    𝑠 = 1, 2...  

З цих співвідношень випливають рекурентні формули 

𝑃𝑘 =
𝜆

𝑘𝜇
𝑃𝑘 − 1,    𝑘 = 1, 2,..., n,  

𝑃𝑛+𝑠 =
𝜆

𝑛𝜇
𝑃𝑛 + 𝑠 − 1,     𝑠 = 1, 2,...  

з яких отримаємо 

𝑃1 =
𝜆

𝜇
𝑃0, 

𝑃2 =
𝜆

2𝜇
𝑃1 =

𝜆2

2!𝜇2
𝑃0, 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

𝑃𝑘 =
𝜆

𝑘𝜇
𝑃𝑘 − 1 =

𝜆𝑘

𝑘!𝜇𝑘
𝑃0, 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

𝑃𝑛 =
𝜆𝑛

𝑛!𝜇𝑛
𝑃0, 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

𝑃𝑛 + 𝑠 =
𝜆𝑛 + 𝑠

𝑛! 𝑛𝑠𝜇𝑛 + 𝑠
𝑃0,      s = 1, 2,... 

(10) 

Зауважимо тепер, що з другого, четвертого тощо рівнянь системи (7) слідує: 

𝑃0 = 𝑃01, 
𝑃1 = 𝑃11, 
. . . . . . . . . . . . . 
𝑃𝑛−1 = 𝑃𝑛 − 1, 1, 
. . . . . . . . . . . . . 
𝑃𝑛 + 𝑠 = 𝑃𝑛 + 𝑠, 1. 
. . . . . . . . . . . .. 

(11) 

Співвідношення (10) та (11) з урахуванням умови нормування дозволяють розрахувати значення 𝑃0. 

При цьому 

∑ 𝑃𝑘 + ∑ 𝑃𝑘, 1

𝑛

𝑘 = 0

𝑛

𝑘 = 0

+ ∑ 𝑃𝑛 + 𝑠

∞

𝑠 = 1

+ ∑ 𝑃𝑛 + 𝑠, 1

∞

𝑠 = 1

= 2𝑃0 [∑
𝜆𝑘

𝑘! 𝜇𝑘
+

𝜆𝑛

𝑛! 𝜇𝑛
∑

𝜆𝑠

(𝑛𝜇)𝑠

∞

𝑠 = 1

𝑛

𝑘 = 0

] = 1. 
 

 

Як відомо, у n-канальній системі без втрат черга не зростатиме до нескінченності, якщо виконується 

нерівність λ / μ < n. У цьому випадку 

∑ (
𝜆

𝑛𝜇
)

∞

𝑠 = 1

𝑠

=

𝜆
𝑛𝜇

1 −
𝜆
𝑛𝜇

=
𝜆

𝑛𝜇 − 𝜆
. 

 

При цьому рівняння для відшукання 𝑃0 набуває вигляду 

2𝑃0 [∑
𝜆𝑘

𝑘! 𝜇𝑘
+

𝜆𝑛 + 1

𝑛! 𝜇𝑛(𝑛𝜇 − 𝜆)

𝑛

𝑘 = 0

] = 1, 
 

 

звідки 

𝑃0 =
1

2 [∑
𝜆𝑘

𝑘! 𝜇𝑘
+

𝜆𝑛 + 1

𝑛! 𝜇𝑛(𝑛𝜇 − 𝜆)
𝑛
𝑘 = 0 ]

. 
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Тоді 

𝑃𝑘 =

𝜆𝑘

𝑘! 𝜇𝑘

2 [∑
𝜆ℓ

ℓ! 𝜇ℓ
+

𝜆𝑛 + 1

𝑛! 𝜇𝑛(𝑛𝜇 − 𝜆)
𝑛
ℓ = 0 ]

,          k = 0, 1, 2,..., n, 

 

 

 

𝑃𝑛 + 𝑠 =

𝜆𝑛 + 𝑠

𝑛! 𝜇𝑛 + 𝑠

2 [∑
𝜆ℓ

ℓ! 𝜇ℓ
+

𝜆𝑛 + 1

𝑛! 𝜇𝑛(𝑛𝜇 − 𝜆)
𝑛
ℓ = 0 ]

,          s = 1, 2...  

 

 

Зрозуміло, що це співвідношення описують ймовірності станів 𝐸𝑘 , 𝑘 = 0, 1, . . . , 𝑛, n+ 1, ..., n+ s, ... у 

системі, відповідної графу, наведеному на рисунку 1. Разом з тим справжня ймовірність стану Е𝑘 для 

системи, на вхід якої надходить ерланговський потік другого порядку, дорівнює 

𝑃𝑘, Е = 𝑃𝑘 + 𝑃𝑘1, 𝑘 = 0, 1, 2,..., n ,  

звідки, з урахуванням (11), маємо 

𝑃𝑘, Е = 2𝑃𝑘 =

𝜆𝑘

𝑘! 𝜇𝑘

[∑
𝜆ℓ

ℓ! 𝜇ℓ
+

𝜆𝑛+1

𝑛! 𝜇𝑛(𝑛𝜇 − 𝜆)
𝑛
ℓ = 0 ]

,           k = 0, 1, 2,..., n, n+ 1, ...  

 

𝑃𝑛 + 𝑠, Е = 2𝑃𝑛 + 𝑠 =

𝜆𝑛 + 𝑠

𝑛! 𝜇𝑛 + 𝑠

[∑
𝜆ℓ

ℓ! 𝜇ℓ
+

𝜆𝑛 + 1

𝑛! 𝜇𝑛(𝑛𝜇 − 𝜆)
𝑛
ℓ = 0 ]

,            s = 1, 2... (12) 

Абсолютно аналогічно може бути проведений аналіз системи, на вхід якої надходить потік Ерланга 

𝑙- го порядку. У цьому випадку у графі станів та переходів перед кожним справжнім станом необхідно 

ввести (𝑙 − 1)  буферний стан, що описують переходи системи під впливом відсіюваних (𝑙 − 1)  -х заявок, 

що не впливають на кількість зайнятих каналів системи. Відповідні співвідношення, з метою простоти, 

отримаємо для окремого випадку системи з відмовами. Фрагмент графа переходів для такої системи 

має вигляд (рис. 2): 

 

 
 

Рис. 2. Фрагмент графа станів та переходів системи з ерлангівським вхідним потоком l-го порядку та 

експоненційним обслуговуванням 

 

Оскільки технологія отримання результуючих співвідношень для ймовірностей станів в цьому випадку 

аналогічна описаної вище, наведемо необхідні викладки без пояснень. 

−𝜆𝑃0 + 𝜇𝑃1 = 0, 
𝜆𝑃0 − 𝜆𝑃01 = 0, 
𝜆𝑃01 − 𝜆𝑃02 = 0, 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
𝜆𝑃0, 𝑙−2 − 𝜆𝑃0,𝑙−1 = 0, 

𝜆𝑃0, 𝑙−1 + 2𝜇𝑃2 − (𝜆 + 𝜇)𝑃1 = 0, 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
𝜆𝑃𝑘−1 − 𝜆𝑃𝑘−1,1 = 0, 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
𝜆𝑃𝑘−1, 𝑙−2 − 𝜆𝑃𝑘−1, 𝑙−1 = 0, 

𝜆𝑃𝑘−1, 𝑙−1 + (𝑘 + 1)𝜇𝑃𝑘+1 − (𝜆 + 𝑘𝜇)𝑃𝑘 = 0, 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
𝜆𝑃𝑛−1, 𝑙−1 + 𝑛𝜇𝑃𝑛 = 0. 

(13) 

Підсумовуючи друге, третє,…, 𝑙 -є рівняння з (𝑙 + 1) -м рівнянням, потім наступні 𝑙 рівнянь і т. д., 

нарешті, останні 𝑙 рівнянь, отримаємо: 
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𝜆𝑃0 − 𝜇𝑃1 = 0, 
𝜆𝑃0 + 2𝜇𝑃2 − (𝜆 + 𝜇)𝑃1 = 0, 
𝜆𝑃1 + 3𝜇𝑃3 − (𝜆 + 2𝜇)𝑃2 = 0, 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
𝜆𝑃𝑘 + (𝑘 + 1)𝜇𝑃𝑘+1 − (𝜆 + 𝑘𝜇)𝑃𝑘 = 0, 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
𝜆𝑃𝑛−1 − 𝑛𝜇𝑃𝑛 = 0. 

(14) 

Знову використовуємо 

𝑧𝑘 = 𝜆𝑃𝑘−1 − 𝑘𝜇𝑃𝑘    

і запишемо систему (14) таким чином: 

𝑧1 = 0, 
𝑧1 − 𝑧2 = 0, 
𝑧2 − 𝑧3 = 0, 
................. 
𝑧𝑘 − 𝑧𝑘 + 1 = 0, 
𝑧𝑘 = 0. 

 

Звідси 

𝑧1 = 𝑧2 =. . . = 𝑧𝑛 = 0  

або 

𝜆𝑃𝑘 − 1 − 𝑘𝜇𝑃𝑘 = 0, 𝑘 = 1, 2, . . . , 𝑛.  

З цих співвідношень отримаємо ту саму рекурентну формулу 

𝑃𝑘 =
𝜆

𝑘𝜇
𝑃𝑘−1  , 

 

з якої знову випливають звичайні формули Ерланга 

𝑃1 =
𝜆

𝜇
𝑃0, 

𝑃2 =
𝜆

2𝜇
𝑃1 =

𝜆2

2!𝜇2
𝑃0, 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

𝑃𝑘 =
𝜆

𝑘𝜇
𝑃𝑘−1 =

𝜆𝑘

𝑘!𝜇𝑘
𝑃0, 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

𝑃𝑛 =
𝜆𝑛

𝑛!𝜇𝑛
𝑃0. 

(15) 

Зауважимо тепер, що з другого, третього тощо рівнянь системи (13) слідує: 

𝑃0 = 𝑃01, 
𝑃01 = 𝑃02, 
. . . . . . . . . . . . . . . . 
𝑃0, 𝑙−2 = 𝑃0, 𝑙−1, 
𝑃1 = 𝑃11, 
. . . . . . . . . . . . . 
𝑃𝑛 − 1 = 𝑃𝑛 − 1, 1. 

(16) 

Співвідношення (15) та (16) з урахуванням умови нормування дозволяють розрахувати значення 𝑃0. 

При цьому 

∑ 𝑃𝑘

𝑛

𝑘 = 0

+ ∑ ∑ 𝑃𝑘, 𝑚

𝑛−1

𝑘 = 0

𝑙−1

𝑚 = 1

= 𝑙 ∑ 𝑃𝑘

𝑛−1

𝑘 = 0

+ 𝑃𝑛 = 𝑃0 [𝑙 ∑
𝜆𝑘

𝑘! 𝜇𝑘

𝑛−1

𝑘 = 0

+
𝜆𝑛

𝑛! 𝜇𝑛
] = 1. 

 

Звідси 

𝑃0 =
1

𝑙 ∑
𝜆𝑘

𝑘! 𝜇𝑘
𝑛 − 1
𝑘 = 0 +

𝜆𝑛

𝑛! 𝜇𝑛

. 
 

(17) 

Тоді, підставляючи (17) у (15), отримаємо 

𝑃𝑘 =

𝜆𝑘

𝑘!𝜇𝑘

𝑙 ∑
𝜆𝑖

𝑖!𝜇𝑖
𝑛−1
𝑖=0 +

𝜆𝑖

𝑖!𝜇𝑛

,  𝑘 = 0, 1, 2, . . . , 𝑛. 

 

Справжня ймовірність стану Е𝑘 для системи, на вхід якої надходить ерланговський потік 𝑙 порядку, 

дорівнює: 

𝑃𝑘, Е = 𝑃𝑘 + ∑ 𝑃𝑘𝑚
𝑙 − 1
𝑚 =1 ,  𝑘 = 0, 1, . . . , 𝑛 − 1,  

звідки з урахуванням (16) маємо 
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𝑃𝑘, Е = 𝑙𝑃𝑘 =
𝑙
𝜆𝑘

𝑘! 𝜇𝑘

𝑙 ∑
𝜆𝑖

𝑖! 𝜇𝑖
𝑛 − 1
𝑖 = 0 +

𝜆𝑛

𝑛! 𝜇𝑛

, 𝑘 = 0, 1, 2, . . . , 𝑛 − 1. 

 

(18) 

𝑃𝑛, Е = 𝑃𝑛 =

𝜆𝑛

𝑛! 𝜇𝑛

𝑙 ∑
𝜆𝑖

𝑖! 𝜇𝑖
𝑛 − 1
𝑖 = 0 +

𝜆𝑛

𝑛! 𝜇𝑛

. (19) 

Отримані співвідношення дозволяють здійснити марківську апроксимацію довільного вхідного потоку 

заявок з достатньою для практики точністю. 

Порівняння втрат пакетів для марківської моделі та моделі, що її апроксимує. Було проведено 

порівняння двох підходів до моделювання вхідного потоку в багаторівневих бездротових мережах: 

марківського потоку, що базується на експоненційному розподілі, та його апроксимації за допомогою 

розподілу Ерланга. Основною метою дослідження є оцінка впливу вибору моделі потоку на ймовірність 

втрати пакетів залежно від рівня навантаження системи. Такий аналіз дозволяє визначити, наскільки 

точнішим є підхід на основі Ерланга та в яких умовах його застосування забезпечує кращу відповідність 

реальним мережевим характеристикам. 

 

 
 

Рис. 3. Графік залежності ймовірності втрати пакетів від рівня навантаження 𝜌 для двох моделей 

 

Графік, наведений на рисунку 3, показує залежність ймовірності втрати пакетів від рівня навантаження 

𝜌 для двох моделей: марківського потоку (експоненційний розподіл) та апроксимації потоку за допомогою 

розподілу Ерланга. Основна мета такого порівняння – оцінити, наскільки точнішою є апроксимація 

Ерланга в контексті мережевого моделювання, особливо в умовах підвищеного навантаження. 

Як видно з графіка, при малих значеннях навантаження обидві моделі дають дуже низькі значення 

втрат, що є очікуваним, оскільки система працює в незавантаженому режимі. Втрати пакетів залишаються 

близькими до нуля, що вказує на ефективну передачу без істотних перешкод. 

Однак зі збільшенням навантаження розходження між моделями стає більш помітним. Марківська 

модель, яка базується на експоненційному розподілі, демонструє швидше зростання втрат порівняно з 

моделлю Ерланга. Це пояснюється тим, що експоненційний розподіл має вищу дисперсію, що призводить 

до більшої варіативності вхідного потоку і, відповідно, вищого рівня втрат у випадках перевантаження 

системи. 

Апроксимація Ерланга, що враховує згладжений розподіл часу між подіями, дає більш стабільний 

потік із меншими піками навантаження. Як наслідок, вона забезпечує нижчі втрати в умовах високого 

трафіку. Це робить її більш точною моделлю для реальних мережевих сценаріїв, де трафік не є повністю 

випадковим, а має певну структурованість. 

Таким чином, апроксимація Ерланга є кращим підходом для прогнозування втрат у системах, де потік 

заявок має певну впорядкованість, наприклад, у мережах з пакетним передаванням даних або потоковими 

сервісами. Використання цієї моделі дозволяє отримати точніші оцінки продуктивності та забезпечити 

ефективніший розподіл ресурсів у багаторівневих бездротових мережах. 

Було проведено порівняння середньої довжини черги пакетів залежно від рівня навантаження для двох 

моделей: марківського потоку (експоненційний розподіл) та його апроксимації розподілом Ерланга. Це 

дослідження дозволяє оцінити, як вибір моделі вхідного потоку впливає на накопичення пакетів у системі 

та які наслідки це має для продуктивності мережі. Аналіз отриманих результатів допомагає зрозуміти, який 

підхід забезпечує більш точне прогнозування завантаженості системи та ефективнішу роботу бездротових 

мереж у реальних умовах експлуатації. 
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Рис. 4. Графік залежності довжини черги пакетів від рівня навантаження 𝜌 для двох моделей 

 

Графік, наведений на рисунку 4, демонструє залежність середньої довжини черги від рівня 

навантаження 𝜌 для двох моделей: марківського потоку (експоненційний розподіл) та апроксимації потоку 

Ерланга. Даний аналіз дозволяє оцінити, наскільки використання апроксимації покращує прогнозування 

черги в системі. 

При низьких значеннях навантаження обидві моделі дають майже однакові результати, оскільки 

ймовірність формування черги залишається мінімальною. Однак зі зростанням навантаження 

спостерігається значне розходження між цими підходами. У випадку марківської моделі довжина черги 

починає різко зростати, особливо коли 𝜌 наближається до 1, що вказує на високий рівень накопичення 

пакетів у системі. 

На відміну від цього, модель з апроксимацією Ерланга демонструє менш стрімке зростання черги 

навіть при підвищеному навантаженні. Це пояснюється тим, що розподіл Ерланга краще згладжує часові 

варіації вхідного потоку, зменшуючи пікові навантаження. Як наслідок, система зберігає більш 

контрольовану довжину черги, що є критичним для підтримки стабільної продуктивності мережі. 

Таким чином, апроксимація Ерланга є більш точною моделлю для оцінки навантаження в мережевих 

системах, особливо в умовах високої завантаженості. Вона дозволяє знизити ризик неконтрольованого 

зростання черги та забезпечує більш точне планування ресурсів у бездротових мережах. 

Висновки та перспективи подальших досліджень. Для моделювання вхідного потоку в 

багаторівневій мережі застосовується апроксимація за допомогою процесу Ерланга певного порядку. 

Такий підхід дозволяє гнучко налаштовувати параметри розподілу часу між подіями, що є критичним для 

точності аналітичних оцінок продуктивності мережі. 

Вхідний трафік представлений як суперпозиція незалежних подій, які надходять у систему відповідно 

до узагальненого пуассонівського процесу. Для його апроксимації використовується розподіл Ерланга 

порядку 𝑘, що є сукупністю 𝑘 незалежних експоненційних розподілів із середньою інтенсивністю 

надходження заявок 𝜆. 

Ключове рівняння для функції щільності ймовірності часу між подіями: 

𝑓(𝑡) =
𝜆𝑘𝑡𝑘 − 1𝑒− 𝜆𝑡

(𝑘 − 1)!
,     𝑡 ≥ 0. (20) 

Це дозволяє описати часовий розподіл вхідного трафіку більш точно, ніж простий експоненційний 

розподіл, забезпечуючи відповідність емпіричним характеристикам мережевого навантаження. 

Для оцінки продуктивності мережі використовується метод моментів, що дозволяє обчислити основні 

характеристики системи без потреби у складних чисельних розв’язках. При цьому параметри 𝑘 та 𝜆 

визначаються на основі середнього та дисперсії міжподійних інтервалів, отриманих з експериментальних 

даних або імітаційного моделювання. 

Такий підхід дозволяє отримати узагальнену оцінку характеристик навантаження системи та 

забезпечує достатню точність для практичних задач оптимізації продуктивності багаторівневих 

бездротових мереж. 

Марківський процес із модульованою інтенсивністю (MMPP) є потужним інструментом для 

прогнозування навантаження в телекомунікаційних мережах та адаптивного керування ресурсами. Його 

використання дозволяє враховувати змінність трафіку, адаптуючи параметри системи відповідно до 

поточних умов. Для ефективного застосування MMPP необхідно проаналізувати статистичні 

характеристики вхідного потоку, такі як середня інтенсивність, автокореляція та спектральна структура. 

Це дає змогу налаштувати модель таким чином, щоб вона максимально точно відтворювала реальні 

сценарії змінного навантаження. 

Практичне використання MMPP у керуванні мережевими ресурсами враховує динамічне 

налаштування пропускної здатності, управління чергами та оптимізацію стратегії буферизації. Наприклад, 
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у мережах із потоковими мультимедійними сервісами MMPP допомагає передбачати періоди підвищеного 

навантаження та завчасно перерозподіляти ресурси. Завдяки можливості враховувати змінну інтенсивність 

потоку ця модель дозволяє розробляти адаптивні алгоритми маршрутизації та регулювання якості 

обслуговування (QoS), що підвищує ефективність роботи мережі та зменшує ймовірність перевантаження. 

Марківська апроксимація немарківського трафіку є важливим методом для аналізу продуктивності 

телекомунікаційних систем, де вхідний потік даних має складну кореляційну структуру. У цьому 

дослідженні розглядається підхід до апроксимації, заснований на використанні розподілу Ерланга для 

моделювання часу між подіями. Це дозволяє враховувати змінність інтенсивності трафіку та його 

кореляційні властивості, які не можуть бути адекватно описані простим експоненційним розподілом. 

Порівняння результатів показує, що при низьких рівнях навантаження (ρ) обидві моделі дають подібні 

результати щодо втрат пакетів та довжини черги. Однак зі зростанням навантаження експоненційна 

модель демонструє різкіші коливання та вищі значення втрат, тоді як апроксимація Ерланга забезпечує 

більш стабільну оцінку. Це пояснюється тим, що модель Ерланга дозволяє краще узгодити часові 

інтервали між подіями з реальною поведінкою мережевого трафіку. 

Практичне застосування апроксимації Ерланга до оцінки продуктивності мереж дозволяє покращити 

точність прогнозування затримок і завантаженості черг. Такий підхід є особливо корисним для систем із 

високою змінністю навантаження, наприклад, у мультимедійних потокових сервісах та інтернет-трафіку. 

Таким чином, використання апроксимації Ерланга є ефективним методом для покращення аналітичних 

моделей продуктивності телекомунікаційних систем, забезпечуючи кращу відповідність до реальних умов 

роботи мережі. 
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Pustovoitov P.E., Kompaniets V.O. 

Markov approximation of network traffic using hidden state models 

Markov approximation of non-Markovian traffic is an important method for analyzing the performance of 

telecommunication systems where the incoming data stream has a complex correlation structure. The paper considers an 

approximation method based on Markov processes with modulated intensity (MMPP). This model allows modeling traffic with 

variable intensity that varies according to a hidden Markov process. The main advantage of this approach is the ability to 

reproduce the statistical properties of real traffic, in particular its autocorrelation and variability of the intensity of packet flows. 

The MMPP model is built on the basis of a Poisson process, the intensity of which varies according to the transitions 

between the states of the Markov chain. The paper presents a mathematical formalization of this model, in particular, the 

definition of the transition matrix between the states and the flow intensity parameters for each state. This allows for precise 

control of the behavior of network traffic in dynamic conditions, where significant load fluctuations are observed. 

Considerable attention is paid to methods for tuning MMPP parameters. For this purpose, parameter estimation methods 

based on the analysis of experimental traffic data are used. Kolmogorov-Chapman matrix equations are used to calculate the 

state probabilities and the average flow intensity in each state. An important aspect is the correct choice of the number of states 

in the Markov chain, since the accuracy of the approximation depends on this. 

The practical application of MMPP is considered in the context of networks with video and multimedia content streams, 

where traditional models do not take into account the variable traffic intensity. Due to the ability to simulate periods of high 

and low load, MMPP allows you to effectively analyze the behavior of such networks and optimize their performance. 

The paper provides examples of real traffic data that were approximated, which confirms the effectiveness of the method. 

However, the MMPP method has certain limitations. In particular, the process of tuning the model can be computationally 

complex, since the selection of Markov process parameters requires significant computing resources. In addition, for a correct 

approximation, it is necessary to have a large amount of statistical data on traffic so that the obtained parameters correspond to 

the real behavior of the network. 

Thus, the use of MMPP is an effective approach to approximating non-Markovian traffic, which provides flexibility and 

accuracy in reproducing its parameters. The practical implementation of this method requires a careful approach to parameter 

tuning, but its application allows significantly increasing the accuracy of the analysis of the performance of telecommunication 

systems. 

Keywords: Markov approximation; flow intensity; traffic modeling; mathematical tools; method; model; 

telecommunication system. 
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