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Software development technology for high-performance biometric data comparators
using selective SIMD vectorization

This research introduces a systematic software development methodology for high-performance
biometric data comparators grounded in selective SIMD vectorization principles. The technology solves
the important problem of choosing the best optimization strategy by creating a theoretical framework that
tells you when and where to use vectorization instead of regular parallelization at different stages of an
algorithm. The technology combines the Roofline model for computational limits and the Universal
Scalability Law for testing parallel systems to give developers efficiency taxonomies and decision criteria
for whether or not to use vectorization in biometric systems that process millions of samples.
The technology validation utilized a four-stage minutiae-based fingerprint comparison algorithm,
executed through various computational methods: traditional thread-based parallelization,
SIMD vectorization utilizing SSE and AVX instructions, and hybrid methodologies that integrate both
techniques. The experimental validation employed Intel Core i9 architecture alongside the FVC 2000
database, which comprises 80 fingerprint images and 4,421 minutiae points, utilizing stringent statistical
methodologies across multiple iterations. The algorithm includes extracting minutiae from centroid
squares, calculating local Euclidean structures, analyzing geometric distances and angles, and matching
globally with displacement calculations. The results showed unexpected results that went against common
ideas about optimization. The hybrid implementation showed consistent performance improvements in all
cases, with a 2.66 times speedup with 32 threads and a 3.40 times improvement with complete datasets.
This was expected because full SIMD vectorization didn't work as well as traditional parallelization
because of high algorithmic interdependencies. Profiling analysis showed that the parallel and hybrid
versions had the same computational stages. This means that the performance gains came from secondary
optimization effects, such as better memory alignment, better cache use through uniform dictionary
distribution, and compiler-induced optimizations during object field access. The research creates a
technology framework for selective vectorization in biometric applications. This gives software
developers a systematic way to make high-performance identification systems that can be used in real-
world situations where they need to be used on a large scale.

Keywords: biometric identification; vectorization; SIMD; parallelization; performance; AVX; SSE;
software development technology.

Topic relevance. Modern biometric identification systems have high performance standards for biometric
data matching systems, especially when they are working with databases that have millions of samples. Horizontal
scaling, which means running more threads at the same time, is a common method used in the development of
biometric identification software. The applicability of vectorization technology in this domain remains
inadequately explored. Vectorization technologies have many benefits, such as speeding up processing by handling
more data at once. However, when they are used in real life, they often produce unexpected results. Speeding up
thread-based scaling isn't always possible, especially when tasks have a lot of objects that depend on each other.
These factors are the main reasons why we need to talk about technology for developing software that is
computationally efficient for biometric template identification.

Modern deployment scenarios show how important it is to optimize performance in biometric systems.
International airports' border control systems handle thousands of passengers every hour and need to respond to
identification requests in less than two seconds per query against databases with more than ten million records.
Financial institutions that use biometric authentication to approve transactions face similar problems, as delays in
processing directly affect the customer experience and operational costs. Forensic analysts in law enforcement
need to quickly match partial or degraded fingerprints against national criminal databases with millions of records.
These real-world needs put a lot of pressure on software development teams to come up with solutions that make
the most of the existing hardware infrastructure's computing power. The economic aspect is also important:
improving algorithms to optimize performance can cut server infrastructure needs by two to three times, which
can save a lot of money on both capital and operating costs compared to horizontal scaling by buying more
hardware.

From a software engineering point of view, building systems that work so well requires a systematic approach
to technology instead of trying to optimize things on the fly. Developers have to make strategic choices between
different ways to optimize: thread-based parallelization, SIMD vectorization with SSE and AV X instruction sets,
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hybrid methods that use both techniques, and GPU acceleration. The lack of systematic methods for choosing an
optimization strategy often results in suboptimal implementations. This is because developers either use
vectorization indiscriminately at all stages of an algorithm or don't use it at all because they are unsure of the
results and the implementation is too complicated. This research fills this methodological gap by suggesting a
technology framework for selective vectorization that gives developers theoretical foundations, efficiency
taxonomies, and practical decision criteria to help them decide which algorithmic stages would benefit from SIMD
instructions and which should use traditional parallelization. This methodical approach is especially useful for
software development teams that work with computationally intensive biometric algorithms where performance is
very important but there aren't enough resources, time, or specialized knowledge to make improvements.

Analysis of recent researches. Deep neural networks continue to advance biometric identification capabilities
through innovative architectural designs. Hybrid approaches that combine convolutional neural networks with
conventional algorithms demonstrate superior accuracy when processing low-quality fingerprints [1, 2]. Recent
investigations explore several promising directions: integration of fingerprint domain knowledge into neural
architectures [3, 4], application of transformer models for feature extraction [5], and development of unified
networks that perform recognition tasks directly without intermediate processing stages [6]. These studies
collectively establish that hybrid methodologies integrating domain expertise with machine learning outperform
purely data-driven approaches in handling noise, distortions, and fingerprint variations.

Parallel processing architectures have been extensively studied for fingerprint matching acceleration. Research
on high-performance computing systems reveals fundamental scalability limitations, with performance plateaus
emerging at specific thread counts regardless of parallelization strategy [7]. GPU-accelerated implementations
achieve substantial speedups compared to CPU-based solutions, but their effectiveness depends critically on
memory access pattern optimization and efficient data transfer between host and device [8]. These findings
emphasize that architectural considerations, including network topology and data movement patterns, constitute
primary determinants of scalable implementation success rather than mere computational throughput.

SIMD vectorization presents complex optimization challenges at the microarchitectural level. Studies show
that intensive use of vector instructions can trigger processor frequency management mechanisms, creating
performance effects that extend beyond the computational operations themselves [9-11]. These microarchitectural
interactions introduce substantial complexity into optimization strategies for biometric algorithms. Nevertheless,
modern vectorization techniques demonstrate significant potential: through careful combination of SIMD
instructions, data prefetching, and pipeline optimization, general-purpose processors can approach ASIC-level
performance, substantially narrowing the gap between specialized and commaodity hardware [12].

Ukrainian research makes important contributions to both biometric systems and high-performance computing
methodologies. Studies address biometric identification algorithms including pattern recognition and fingerprint
matching technologies [13]. Research on SIMD vectorization for x86-compatible processors provides practical
frameworks for instruction-level parallelism optimization [14]. Multilevel parallel computing models demonstrate
effective integration of MIMD and SIMD paradigms [15], while formal methodologies establish rigorous
approaches to loop parallelization on GPU accelerators [16]. Comparative analyses of software versus hardware
acceleration in digital signal processing offer valuable insights for hardware-software co-design optimization
strategies [17].

Literature analysis identifies critical gaps in current understanding of biometric system optimization. Existing
research predominantly addresses individual component optimization without examining systemic interactions.
The integration of neural network approaches with traditional algorithms, particularly considering
microarchitectural optimization constraints, remains insufficiently explored. Current methodologies lack
comprehensive frameworks for analyzing processor component interactions during algorithm development.
Performance models typically focus on discrete operations without accounting for microarchitectural resource
contention or interaction effects between optimization strategies under varying processor states. Most critically,
the literature provides insufficient guidance for practitioners: systematic technology frameworks that enable
software developers to make informed, context-specific decisions about selective optimization strategy application
across different algorithmic stages are notably absent. This creates a significant methodological gap between
theoretical understanding of optimization techniques and practical requirements of high-performance biometric
system development.

The objective of the article is to create and test a systematic software development technology for high-
performance biometric comparators that uses selective SIMD vectorization principles. This technology fills the
methodological gap in choosing optimization strategies by giving developers theoretical foundations, decision
criteria, and practical advice on when and where to use vectorization instead of traditional parallelization. The goal
of this research is to solve the following problems:

1. Creation of a theoretical framework that integrates parallel computation models and vectorization efficiency
taxonomies relevant to biometric algorithms exhibiting diverse levels of data interdependency;

2. Assessment of the proposed theoretical models' relevance to multi-stage biometric sample identification
algorithms via operational intensity analysis and scalability evaluation;
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3. Creation of working hypotheses concerning the most effective optimization strategies for various
algorithmic stages, grounded in theoretical predictions and efficiency benchmarks;

4. Thorough experimental validation of all computational models across diverse thread counts and dataset
dimensions to confirm theoretical predictions and uncover unforeseen performance attributes;

5. Examination of acquired results encompassing the profiling of computational stages, exploration of
microarchitectural impacts, and the development of technology framework suggestions for effective software
development processes.

Presentation of main material. For modern biometric systems, rapid large data processing is crucial,
requiring improved matching algorithms. One approach is vectorization using SIMD instructions (SSE, AVX,
AVX-512). However, applying this technique in complex biometric algorithms presents difficulties related to
processor architecture, requiring theoretical analysis investigation.

The theoretical foundation begins with the Roofline model, which defines general computational system
performance limitations. According to this model, overall system performance can be described as follows:

T= min(nmaw Mmax - D, (1)
where 7 is overall system performance;
Tmax 1S peak processor performance;
Mmax — IS peak memory bandwidth.

| is operational intensity, representing the ratio of executed operations to transferred data volume.

According to this model, computational systems can be divided into memory-bound and compute-bound
according to the following metric:

T[max

Al = T, (2)

where Al is the intensity limit point.

According to formula (2), computational models satisfying the inequality | < Al can be classified as memory-
bound, while all others are compute-bound. Biometric systems characteristically show uneven distribution where
some identification stages belong to the first category while others belong to the second. Determining overall
intensity (and consequently, system performance) under these conditions is generally a complex task.

For evaluating parallel and vectorized system performance, Amdahl's law and its improvements, such as the
Universal Scalability Law (USL), can be used. The Universal Scalability Law describes relative throughput as
follows:

N

C(N)_1+a-(1v—1)+/3-1v-(1v—1)' ®)
where C(N) is relative throughput;
N is the number of processors engaged;
a is the contention coefficient reflecting shared resource waiting (0 < a < 1);
B is the coherency coefficient reflecting synchronization overhead (8 > 0).
For vectorized systems, Amdahl's law can be applied in the following form:
1
0O, =—————,
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where oy is vectorization acceleration;
p is the vectorizable algorithm portion (0 <p <1);
o is SIMD register width (depends on vectorization type).
Besides vectorization acceleration, efficiency must be evaluated as shown below:
CU
€y =— (%)

w
where ¢ is vectorization efficiency;
cy is the number of activated vectorization channels.
Overall system performance can then be estimated as follows:
Tresuie = Min(C(N), 0, 1), (6)

where mesuit is the final system productivity assessment.

Depending on parameters, the following taxonomy is proposed for evaluating vectorization applicability:

1. High feasibility: vectorization application will likely positively affect system productivity. Evaluation
criterion: e, > 0.9;

2. Medium feasibility: vectorization application will likely neither benefit nor harm system performance.
Evaluation criterion: 0.5 < ¢, < 0.9;

3. Low feasibility: vectorization application will likely adversely affect system performance. Evaluation
criterion: ¢,< 0.5.

The suggested technology for software development that allows for selective SIMD vectorization has a
systematic workflow that helps developers choose the best optimization strategy. This technology framework has
the following steps:
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1. The first step is to break down the algorithm and sort the stages. Developers figure out the different
computational stages in the biometric algorithm and look at their traits, such as how the data depends on each
other, how hard the operations are, and how memory is accessed. Formulas (4) and (5) set the vectorization
efficiency standards that each stage is compared to in order to see if it would work well with SIMD optimization;

2. Stage two uses theoretical models to guess how well things will work. For every identified stage, operational
intensity is computed using the Roofline model to distinguish between memory-bound and compute-bound
classifications. To guess how well an algorithm will scale in parallel, we look at its characteristics and use them
to guess the Universal Scalability Law parameters. To find out if a stage is highly, moderately, or not feasible, the
efficiency of vectorization is calculated;

3. Stage three is about making specific choices about instruments. Developers make smart decisions about
how to optimize each algorithmic stage based on what they think will happen. If a stage can be vectorized easily,
it gets SIMD implementation with the right instruction sets, like SSE or AVX. Stages with low feasibility keep the
usual thread-based parallelization without vectorization. To clear up any doubts, stages with medium feasibility
need prototyping and benchmarking;

4. Stage four includes putting something into action and checking to see if it works. The chosen optimization
strategies are put into action with an eye toward microarchitectural factors like memory alignment, cache use, and
data structure design. Comprehensive profiling across varying thread counts and dataset sizes validates theoretical
predictions and identifies unexpected interactions between different optimization approaches.

The proposed technology works with a fingerprint comparison algorithm based on minutiae features.
The algorithm is four-stage and includes the following steps:

1. Feature point extraction within centroid squares;

2. Calculation of local Euclidean structure metrics within extracted squares;

3. Local structure matching: two squares are compared from the reference point perspective and all others.
Distances and angles in corresponding squares are analyzed. The main goal is to identify similar Euclidean
structures as the foundation for the final stage;

4. Global matching conduct. Based on found similar structures, relative displacement calculation of the first
image relative to the second is performed. After displacement execution, the entire point set is matched against
each other. Based on match quantity, a similarity metric between images is determined.

Using the suggested technology framework on this algorithm gives clear suggestions for how to improve it.
Stages one and two show that the data in them is not very dependent on each other because operations are done on
separate minutiae points within centroid squares. This means that vectorization is likely to work well according to
the established efficiency criteria. The calculations for the local Euclidean structure involve doing the same math
over and over on coordinate data with memory access patterns that are easy to predict. This makes them great
candidates for SIMD optimization. On the other hand, stages three and four show a high level of algorithmic
complexity of order n squared m squared, with a lot of conditional branching based on similarity thresholds and
complex data dependencies through nested iterations. The matching operations need to be synchronized often and
access dictionary structures in an irregular way, which shows that vectorization is not very likely to work.
This analysis results in the technology-driven decision to implement selective vectorization solely for stages one
and two, while preserving traditional parallelization for stages three and four.

Three computational implementations were used to validate the technology: a pure parallelization model, a
full SIMD vectorization model, and a selective hybrid model. The code example below shows how to use the
parallel model, which is the starting point for the comparison. This implementation shows the four-step algorithmic
structure that includes extracting minutiae, calculating metrics, comparing them locally, and comparing them
globally. The vectorized model has the same algorithmic structure as the original, but in stages one and two, it
uses SIMD primitives instead of scalar operations. The hybrid model uses parallelization for stages three and four
and selective vectorization for stages one and two. This is based on theoretical predictions about how feasible
vectorization is. Complete implementations of all three computational models are available in the referenced
repository. The parallel version presented here demonstrates the intricate calculations and data dependencies that
favor selective vectorization over full vectorization strategies. The minutiae comparison process exhibits
extremely strong data interdependencies, reflected primarily in the O(n’m?) algorithmic complexity, where n and
m denote the number of minutiae points on the two fingerprint images being compared. These dependencies create
computational bottlenecks that benefit from selective rather than uniform vectorization. Full implementation
details and source code are provided in [18].

Experimental methodology. Experiments were conducted on a system with an Intel Core i9 processor
supporting SSE4.2, AV X, and AV X2 instructions. Operating system: Windows, runtime environment: NET 8.0.
The FVC 2000 (DB1_B) database contains 80 fingerprint images with 4,421 minutiae. Each measurement was
repeated at least 5 times to ensure statistical reliability. Pre-measurement warm-up was performed to stabilize JIT
compiler and thread pool states. Planned experiments included: execution time measurement relative to thread
count used, execution time measurement relative to input dataset size, and algorithm execution stage profiling.
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Experimental results. All experimental results were recorded using the auxiliary Stopwatch class. Table 1
reflects execution time measurement results relative to thread count used (on a dataset subset containing 32 images

out of 80, containing 1,396 minutiae).

Table 1
Biometric comparator execution time depending on thread count

Thread count Pe_lraIIeI Veqtorized Hybrid version Vectorized Hybrid

version (ms) version (ms) (ms) speedup speedup
32354.81 48202.66 30811.38 0.67 1.05
2 10005.52 11558.76 7463.21 0.87 1.34
3 7442.14 8640.63 4896.15 0.86 1.52
4 6703.53 7861.66 3906.52 0.85 1.72
5 5954.90 7479.67 3150.62 0.80 1.89
6 6207.16 8377.23 3378.49 0.74 1.84
7 6204.50 8404.29 3249.11 0.74 1.91
8 6365.02 8749.76 3130.85 0.73 2.03
10 6168.42 8714.61 2873.36 0.71 2.15
12 6364.33 9222.22 2890.54 0.69 2.20
16 6719.81 10342.11 2908.35 0.65 2.31
20 6818.92 10429.01 2807.38 0.65 2.43
22 6978.51 10717.22 2792.20 0.65 2.50
24 7410.61 11385.68 2911.62 0.65 2.55
32 7601.49 11860.72 2856.30 0.64 2.66

During the experiment, the following general data were obtained: optimal thread count parameters
(5 for vectorized and parallel models, 22 for hybrid), and scalability coefficients (relative to single thread): 5.43 for

parallel version, 6.44 for SIMD version, and 11.03 for hybrid version.
Experiment 1 results are illustrated on figures 1 and 2.

EXECUTION TIME DEPENDING ON THREAD COUNT

=== Parallel == = Vectorized Hybrid
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Fig. 1. Graph of execution time depending on thread count
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Fig. 2. Speedup graph

Tables 2 and 3 show the results of measuring the execution time relative to the size of the input dataset (fixed

number of threads — maximum (32 units)).

Table 2
Biometric comparator execution time depending on dataset size
Dataset size Pe_1ra||e| Veqtorized Hybrid version Vectorized Hybrid
version (ms) version (ms) (ms) speedup speedup
8 41.55 44.97 26.16 0.92 1.59
16 181.70 207.93 81.13 0.87 2.24
24 2932.56 3859.72 1009.70 0.76 2.90
32 7735.33 12140.93 2868.27 0.64 2.70
40 20388.46 39034.85 8537.78 0.52 2.39
48 26316.74 47202.80 10429.11 0.56 2.52
56 58307.50 95497.23 21141.34 0.61 2.76
64 85297.40 139615.75 29972.23 0.61 2.85
72 98843.78 146797.38 51935.87 0.67 1.90
80 205992.38 205114.97 60634.67 1.00 3.40
Table 3

Relative marginal increase in execution time and data volume depending on the dataset size

Dataset size Parallel increase Vectorized increase Hybrid increase Data increase

8 1 1 1 1

16 4.37 4.62 3.10 2.17
24 16.14 18.56 12.45 1.73
32 2.64 3.15 2.84 1.55
40 2.64 3.22 2.98 1.40
48 1.29 1.21 1.22 1.22
56 2.22 2.03 2.03 1.25
64 1.46 1.46 1.42 1.19
72 1.16 1.05 1.73 1.08
80 2.08 1.40 1.17 1.15

The results of Experiment 2 are illustrated in figures 3-5 for clarity.
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Fig. 3. Graph of execution time dependence on dataset size
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Fig. 4. Graph of acceleration of models relative to the parallel model of computing organization
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Fig. 5. Graph of the relative marginal increment in execution time of models and data

Tables 4-5 reflect algorithm execution stage profiling results (fixed thread count at maximum 32 units, all

dataset data

participate in identification).
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Table 4
Biometric comparator stage execution times
Parallel version Vectorized version Hybrid version | Vectorized Hybrid
Stage
(ms) (ms) (ms) speedup speedup
Central
minutiae 6.25+7.54 0.41 +£0.07 0.47 +£0.04 15.38 13.33
selection
Metric 13.66 + 14.69 6.12+1.53 5.63+0.37 2.23 2.43
calculation
Local 21272.66 +352.41 | 23595.14+718.51 | 16162+ 54.69 0.90 1.32
comparison
Global | 11350901 +4725.28 | 160956.03 +9556.09 | 45583=824.14 | 071 2.49
comparison
Table 5
The share of time spent computing the algorithm stages from the total execution time of the model
Stage Parallel (%) Vectorized (%) Hybrid (%)
Central minutiae 4.64 x 10° 2.22 % 10 7.61 x 10
selection
Metric calculation 1.01 x 104 3.31 x10° 9.11 x 10°
Local comparison 15.8 12.8 26.2
Global 84.2 87.2 73.8
comparison
The results of Experiment 3 are illustrated in figure 6 for clarity.
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Fig. 6. Diagram of the distribution of execution time of the algorithm execution stages

Discussion and analysis. Conducted experiments illustrated ambiguous results. All experiments confirmed
the working hypothesis regarding the inappropriateness of applying SIMD vectorization for local and global
matching stages. However, despite this, at full load (80 images) algorithm results became equal. This might be
related to excessive thread count used in calculations, requiring additional experiments. The consistently good
hybrid version results compared to parallel version were unexpected. The hybrid version demonstrates stable
acceleration regardless of thread count, input data volume, and other factors. Most interesting is that the most
computationally expensive stages (according to profiling) are identical in parallel and hybrid versions. Additional

verification confirmed no computational

discrepancies,

This phenomenon requires further investigation.
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Various possible causes for this system behavior were examined, including memory structure alignment, JIT
compilation results, thread pool special states, AVX instruction effects on processor physical parameters, cache
memory states, and others. None of these hypotheses found confirmation. Profiling of parallel and hybrid systems
was conducted, and internal states of data storage objects (particularly dictionaries and minutiae model classes)
were studied in detail. The following hypotheses can be formulated:

1. Local matching acceleration (1.32 times according to table 3 results) can likely be explained by
vectorization effects during cache dictionary data writing. This is confirmed by additional metrics such as chi-
square coefficient ratios (4.48), variance index ratios (2.16), and basic statistical metrics of hash chain lengths.
These results emphasize that vectorization writes data more uniformly to dictionaries, reducing overhead with each
dictionary access, which would be barely noticeable with uniform or single access but becomes extremely
noticeable with uneven access patterns like stage 3;

2. Global matching acceleration (2.49 times) can be explained by internal compiler operation. When working
with SIMD vectorization, we applied object field access (coordinates). This likely led to their memory alignment,
ensuring better access. Additionally, there may be affects similar to point 1 when accessing data from local
matching result lists, though this effect appears weakly influential.

Research results are not final and require further experiments to confirm or refute formed hypotheses.
Investigation of computational device parameter effects, compiler versions, and other factors is necessary, along
with more thorough vectorization tool analysis to form stable conclusions regarding vectorization application
benefits as demonstrated in this study. Moreover, additional research is needed regarding this effect's applicability
in other biometric systems or dactyloscopic identifiers not working with fingerprint minutiae.

Conclusions and future research perspectives. This research described software development technology
for high-performance biometric comparison systems. Thorough analysis of theoretical research was conducted,
and parallel, vectorized, and hybrid systems were proposed for solving this task. Experiments revealed that, as
theoretical models predicted, full vectorization does not provide significant performance gains. However, the
hybrid model unexpectedly demonstrated significantly better results. Additional measurements allowed formation
of working hypotheses explaining the discovered effect. Possible problems were identified and the necessity for
further research was formulated to expand the developed software development technology's applicability to other
biometric systems. The findings of the research are not conclusive and necessitate additional inquiry to corroborate
and enhance the proposed technological framework. Based on the current findings and their limitations, several
important directions for future research have been identified.

The initial research direction entails a systematic examination of microarchitectural factors affecting selective
vectorization performance. The present study discovered unanticipated performance enhancements in the hybrid
model, seemingly resulting from secondary optimization effects such as memory alignment and cache utilization
improvements. Nonetheless, these hypotheses necessitate stringent experimental validation via controlled studies
that isolate specific microarchitectural variables. Future studies ought to investigate the responses of various
processor architectures, such as AMD Ryzen, ARM-based systems, and the latest Intel generations, to selective
vectorization strategies. Examining the effects of cache hierarchy by systematically varying dataset sizes in
relation to L1, L2, and L3 cache capacities would elucidate the impact of cache utilization on hybrid model
performance. An examination of memory alignment effects via intentionally misaligned data structures would
either confirm or disprove the alignment hypothesis. Analyzing compiler optimization by comparing different
compiler versions and optimization flags would show how much performance improvements depend on certain
compilation methods.

The second research direction concentrates on broadening the technological framework to encompass various
biometric modalities beyond minutiae-based fingerprint recognition. The current validation utilized a specific
algorithmic methodology characterized by significant data interdependency during matching phases and minimal
interdependency during feature extraction phases. Subsequent research ought to examine the applicability of
selective vectorization principles to various biometric identification techniques, such as iris recognition systems,
facial recognition algorithms, voice authentication processing, and palm print analysis. Each modality has its own
set of computational traits, such as different levels of data parallelism, memory access patterns, and algorithmic
complexity. Using the proposed technology framework in a systematic way across many biometric modalities
would show where it can be used and what changes need to be made for different types of computations.

The third research direction focuses on scalability in extreme computational environments and distributed
architectures. The current experiments employed datasets comprising eighty fingerprint images with several
thousand minutiae points. In large-scale deployment scenarios, databases with millions of biometric templates
need distributed computing architectures. Future research should examine the scalability of selective vectorization
technology in massively parallel systems, encompassing GPU acceleration, multi-node cluster computing, and
heterogeneous computing environments that integrate CPUs with specialized accelerators. Research into load
balancing techniques for hybrid vectorized and non-vectorized stages in distributed systems would tackle real-
world deployment issues. An examination of communication overhead in distributed selective vectorization
implementations would ascertain the ideal granularity for workload distribution.
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The fourth area of research looks at how to combine selective vectorization with other optimization methods
in biometric systems. The present study concentrated on the interplay between parallelization and SIMD
vectorization; however, contemporary high-performance systems utilize multiple optimization layers concurrently.
Future research ought to examine the interplay between selective vectorization and algorithmic optimizations,
including spatial indexing structures for search space reduction, multi-resolution processing strategies for the
prompt dismissal of non-matching candidates, and adaptive precision techniques that modify computational
accuracy in accordance with matching confidence levels. An examination of integrated optimization strategies
would ascertain whether selective vectorization advantages synergize with alternative performance enhancement
methodologies or if optimization interactions yield diminishing returns. Research ought to investigate the
correlation between selective vectorization and memory hierarchy optimization, encompassing prefetching
strategies, data layout transformations, and blocking techniques to enhance temporal locality.

The fifth research direction entails the formalization and quantification of the technology decision framework.
The present study suggests efficiency thresholds and qualitative criteria for the applicability of vectorization,
grounded in operational intensity and data dependency attributes. Subsequent research ought to formulate more
robust quantitative models that accurately forecast vectorization performance enhancements based on algorithmic
and data attributes. Research must ascertain empirical correlations among algorithmic attributes, including loop
structure complexity, memory access stride patterns, branch prediction efficacy, and the practical vectorization
speedup attained. Creating validated performance models would help software developers choose the best
optimization strategy with more confidence during the planning stages. Research should also look into how well
selective vectorization strategies work with different types of input, such as changes in the quality of biometric
samples, the size of the database, and the patterns of query load. This will make sure that performance stays the
same in production deployments. These research directions collectively address the limitations of the current study
while enhancing the applicability and rigor of the proposed software development technology for high-
performance biometric systems. A systematic examination of these avenues would elevate selective vectorization
from a recognized technique for particular situations to a holistic methodology suitable for various computational
environments in biometric identification and possibly other performance-sensitive fields necessitating analogous
optimization strategy determinations.
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Horyases 10.C., Cmeaskos K.C.
TexHoJ10Tisi pO3p00KH MPOrpaMHOro 3ade3neyeHHs 1J1s1 BUCOKONPOAYKTUBHUX KOMNAPATOPiB 6ioMeTPHYHMX JaHUX
3 BUKOPHCTaHHSM BHOipKoBoi BekTopu3anii SIMD

Ile moCHiDKEHHS MPEACTABISIE CHCTEMAaTHYHY METOJOJIOTII0  PO3pOOKM TNPOrpaMHOrO  3a0e3nedyeHHs s
BHCOKOIIPOAYKTUBHUX KOMIIApaTopiB OIOMETPUYHMX JAHWX, 3aCHOBaHy Ha NpUHIMNAX BUOipkoBoil Bekropm3awii SIMD.
TexHoJorisl BHpIlllye Ba)XXINBY IpobieMy BHOOpY HaifKpamioi crparerii onTUMizallii, CTBOPIOIOYN TEOPETHYHY OCHOBY, sIKa
BKa3zye, KONM ¥ 16 BHUKOPHCTOBYBATH BEKTOPH3AIlil0 3aMiCTh 3BHYAMHOI Mapajeni3amii Ha pIi3HHX eTamax ajJrophuTMy.
Texuosoris noeauye moxaens Roofline mmst o6uncmoBanpHuX 06MexeHb Ta YHIBepCAIbHUN 3aKOH MacIITabOBaHOCTI IS
TECTYBaHHS MapalleIbHUX CHCTEM, MO0 HAaTaTH PO3POOHUKAM TaKCOHOMIi e(EeKTHBHOCTI Ta KpHUTEpii MPUIHATTS pilIeHHS
1010 BUKOPUCTAHHS BEKTOPH3aLlii B 010METPUYHUX CHCTEMAX, sIKi 0OpOOIISIOTh MITBHOHY 3paskiB. Jia Bamimamii TeXHomorii
BUKOPUCTOBYBABCS YOTHPHETANHUIl aJrOpUTM IMOPIBHSAHHS BiAOMTKIB MajblLiB Ha OCHOBI MIHYIIiH, 10 BHKOHYBaBCS 3a
JIOTIOMOTOI0 Pi3HMX OOYMCIIOBAJIBHUX METOJIB: TpaauliiiHe Mapaieii3yBaHHS Ha OCHOBI IOTOKiB, Bektopu3auis SIMD 3
BUKOpPHUCTaHHAM IHCTpyKiifi SSE Ta AVX, a Takox TriOpuaHi METOJONOTIi, M0 IHTErPYOTh OOHWIBA METOJIH.
B exkcniepuMmenTasbHiM Basiganii BukopucroBysaiacs apxitekrypa Intel Core i9 pasom 3 6azoro manux FVC 2000, mio mictuth
80 300pakeHp BinOMTKIB ManbLiB Ta 4421 TOUKy MiHYLiH, 3 BAKOPUCTaHHSIM CYBOPUX CTaTHCTUYHUX METOJOJOTIH MPOTATOM
KIJIBKOX iTepamiii. AJTOPUTM MICTHTh BWIIyYEHHS APIOHMX YacTHHOK 3 KBaJpaTiB LEHTPOIAiB, OOUYHMCICHHS JOKAIBHHX
EBKJIIJIOBUX CTPYKTYp, aHAJI3 TEOMETPUYHHUX BiJICTaHEH 1 KYTiB, a TAKOXK TI00aTIbHE 3iCTaBICHHS 3 PO3paxXyHKaMH 3MIIICHHS.
Pesympratén mMOKa3amu HEOUiKyBaHI pe3yNbTATH, sKi CylepedaTh IOMMPEHHM YSBICHHSAM IPO ONTHMI3amito. [10puana
peanizallis POAEMOHCTpYBaja CTaOLIbHE MOKpALICHHs MPOAYKTUBHOCTI y BCIX BHMAIKax, 3i 30UTBIICHHSIM IIBHIKOCTI Y
2,66 paza 3 32 morokamu Ta nmokpaiieHHsaM y 3,40 pasza 3 noBHuMH Habopamu ganux. Lle Oysio ouikyBaHO, OCKIJIBKU MTOBHA
Bektopu3atis SIMD nparroBana He Tak 10Ope, SIK TpaAMLiiliHA Mapasenizallis, Yepe3 BUCOKY aITOPUTMIUHY B3a€EMO3aIC)KHICTb.
Amnani3 npodinioBaHHs 1MOKa3as, L0 MapaielbHa Ta ridpuIHa Bepcil Malk oiHaKoBi 004ncoBajbHi etanu. Lle o3Hadae, mio
MiZIBUIICHHS POAYKTHBHOCTI BiOYJIOCS 3aBISIKM BTOPHHHHUM e()eKTaM ONTHMI3alil, TAKUM SIK Kpallle BUPIBHIOBAHHS TaM’sITi,
Kpallle BUKOPUCTAHHS KeIy 3aBISKA PiIBHOMIPHOMY PO3IOJIITY CIIOBHUKA Ta ONTHMI3allisl, iHAYKOBaHA KOMIIUILITOPOM, IIiJT 4ac
JOCTYITy 10 Moyt 00’ekra. JIOCHiKEHHS CTBOPIOE TEXHOJOTIYHY OCHOBY JJisi BHOIPKOBOI BEKTOpH3aIlii B OlOMETPHYHHX
nonatkax. Lle Hagae po3poOHHKaM MPOTPaMHOT0 3a0e3MeYeHHsT CHCTEMATHYHUN CHOCIO CTBOPEHHS BUCOKOIPOYKTHBHUX CHCTEM
imeHTU}IKaIIi, sIKi MO>KHA BHKOPHCTOBYBATH B PEATBHUX CUTYALISX, A€ TX MOTPiOHO BUKOPHCTOBYBATH Y BEIMKHX MAcCIITa0ax.

KirouoBi cioBa: GiomerpuuHa inentudikauisi; Bekropusauis; SIMD; mapanenizauist; npoaykruBHicts; AVX; SSE;
TeXHoJIOoTist po3pobku I13.
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