Texniuna inorcenepis

DOI: https://doi.org/10.26642/ten-2023-1(91)-166-171
UDK 681.3.06
S.1. Ronskyi, post-graduate student
Zhytomyr Polytechnic State University

Practical examples of using AsyncLocalStorage in NodeJS corporate web applications
(Presented by Ph.D. in Engineering, Associate Professor Kubrak Yu.0.)

Based on the results of a study of the popularity of programming languages conducted by the DOU
community (dou.ua in the overall rating for 2022, the JavaScript programming language took the first place
(18,8 %), and the TypeScript language — the sixth (10,4 %). If we consider the popularity of languages in
the context of backend development, TypeScript took the seventh place (3,3 %), JavaScript — the eighth
(3 %) [1]. Since these languages allow you to develop both the backend and frontend parts of an application,
the popularity of these languages and the number of applications written in them is growing. The main
environment for executing backend code in these languages is the NodeJS platform [2].

The NodeJS environment is actively developing and supplemented with new modules. The NodeJS
module «async_hooks» was introduced in Version 16. Today it has the «Experimental» status. But one of
its parts, namely «Asynchronous context tracking», has become more widely used, has been placed in a
separate section of the documentation and has the status «Stablex.

Article that provides practical usage examples AsyncLocalStorage, will be a valuable resource for
developers and researchers who want to improve their skills in NodeJS and use it effectively to develop
enterprise web applications.

Keywords: corporate applications; web applications; journaling; multitenancy; JavaScript; NodeJS.

Analysis of recent research and publications. An analysis of recent research shows considerable interest in
NodeJS development, including enterprise application development. Aishna Gupta, Anuska Rakshit, Mansi Raturi,
Nishant Raj, Pallavi Mishra study the development of an application for bibliophiles using NodeJS and
MongoDB [3]. Nidhi Daulat, Mihir Chheda, Mishkat Shaikh, Sarvesh Sharma, Theres Bemila, Ankita Awsarmal
explore the development of a travel collaboration application using the MERN technology stack [4]. Krutika Desai
and Jinan Fiaidhi consider developing a social network using the MERN technology stack [5].

The purpose of the article is a demonstration of the possibilities of practical use of the async_hooks module,
namely the class AsyncLocalStorage in corporate web applications to simplify the transfer of auxiliary data that
does not affect the business logic layer.

Presentation of the main material. NodeJS uses an asynchronous programming model, where many operations
are performed in parallel, without waiting for previous operations to complete. Module node:async_hooks provides
an API for tracking asynchronous resources and is in experimental status. AsyncLocalStorage allows you to store
certain data and access it during the entire execution time of an asynchronous chain of operations. Class
AsyncLocalStorage is a part of the module node:async_hooks, but it is stable [2]. In the context of web applications,
we can store and retrieve certain data during the execution of a web request.

In this article, we will investigate the following practical use cases of AsyncLocalStorage:

— passing traceld for logging;

— passing tenantld between application layers.

First, let’s look at the application architecture for our example. In corporate web applications with complex
business logic, it is advisable to use elements of pure or hexagonal architecture. We will use the layer dependency
diagram shown at Fig.1.

Domain
le—
Entities Use cases Gatoway
interfaces
Application
‘ Controllers ‘ | Interceptors ‘ ‘ Utils interfaces
Infrasturcture
Gateway Utils —
implementations implementations

© 5.1, Ronskyi, 2023 Fig. 1. Diagram of application layer dependencies

166

https://doi.org/10.26642/ten-2023-1(91)-

ISSN 2706-5847 Ne 1.(91) 2023

We have obtained a multi-layered architecture with inversion of dependencies relative to the program
execution flow, which corresponds to a «pure architecture» [7]. We will use the TypeScript language, since
JavaScript does not have interfaces, without which the principle of dependency inversion is not obvious.
To simplify implementation, we will use the NestJS framework in the examples. NestJS is a framework for
building scalable and modular server applications based on NodeJS and TypeScript. This framework has a built-
in DI container. If you use other frameworks (Express, Fastify, Koa), you can use other libraries, such as TypeDI
or Inversify.

First, let’s look at the basic usage of AsyncLocalStorage from the NodeJS documentation. We create a sample
of the class AsyncLocalStorage and wrap the asynchronous code call in its run method. This method takes as the
first argument the initial state of our repository and callback:

const asynclLocalStorage = new AsynclLocalStorage();

function logWithId(msg) {
const id = asynclLocalStorage.getStore();
console.log(${id !== undefined ? id : '-'}:", msg);

}

let idSeq = ©;
http.createServer((req, res) => {
asyncLocalStorage.run(idSeq++, () => {
logWithId('start');
// ... async code

})s
}).1listen(8089);

Now let’s look at initialization in our application. We create a module with a sample AsyncLocalStorage, that
will act as a singleton:

const asynclLocalStorage = new AsynclLocalStorage<Map<string, string>>();

export default asynclLocalStorage;

Let’s create middleware to wrap the call context.

export const asynclLocalStorageMiddleware = (
req: Request,
res: Response,
next: NextFunction,
) => {
const store = new Map<string, string>();
asynclLocalStorage.run(store, () => {
next();
})s
¥
We connect our middleware globally at the time of initialization of the NestJS web server. In this case, the
activation procedure is important. This middleware must be connected to other parts of the code that will use the
asynchronous call context.
async function bootstrap() {
const app = await NestFactory.create(AppModule, { // configs });
// this middleware is required for asynclLocalStorage to work
app.use(asyncLocalStorageMiddleware);
// ... other global middlewares, interceptors, etc
await app.listen(3000);

}
bootstrap();

167

Texniuna inorcenepis

To access the asynchronous call context, we will create an abstraction and put it in our DI container:

import { Injectable, Logger } from '@nestjs/common’;
import asynclLocalStorage from '~/@core/async-local-storage’;

@Injectable()
export class AsynclLocalStorageService {
public get(key: string): string {
const store = asynclLocalStorage.getStore();
return store.get(key);

}

public set(key: string, value: string): void {
const store = asynclLocalStorage.getStore();
store.set(key, value);

}

Passing traceld for logging. When using microservices, utility, we can use the distributed tracing pattern [8].
In this case, we can get the traceld in the controller, but we will be interested in it in the Logger class and when
calling another microservice. Traceld can also be useful for monolithic architectures. For example, for logging at
the DEBUG and INFO levels, which are useful for development and debugging, you can get related query data
objects and database query data.

Let’s create a global interceptor that will be responsible for working with traceld. We check the request header
for traceld and create a new one if it is missing.

@Injectable()

export class RestlLoggingInterceptor implements NestInterceptor {
public static CONTEXT_ID HEADER = 'X-Request-Id';
public static TRACE_ID KEY = 'X-Request-Id';

private logger = new Logger(RestLoggingInterceptor.name);
constructor(private readonly asynclLocalStorage: AsynclLocalStorageService) {}

public intercept(
context: ExecutionContext,
next: CallHandler,
): Observable<unknown> {
const request = context.switchToHttp().getRequest<Request>();
const requestTraceld = request.header(
RestLoggingInterceptor.CONTEXT_ID_HEADER,
)s

const traceld = requestTraceld ?? randomBytes(16).toString('hex");

this.asynclLocalStorage.set(RestLoggingInterceptor.TRACE_ID KEY, traceld);
context

.switchToHttp()

.getResponse<Response>()

.set(RestLoggingInterceptor.CONTEXT_ID HEADER, traceld);

// ... intercept REST request and return next()

Now, using our AsyncLocalStorageService abstraction, we can get traceld in other layers of the application. For
example, when logging database calls, calling functions of other microservices, or sending data to message broker.

Using AsyncLocalStorage to simplify multitenancy. In traditional enterprise client-server applications,
which are typically used in a single organization, each client or organization has its own separate software sample.
However, in order to reduce infrastructure costs and optimize resources, there is a need to be able to serve multiple
clients with a single sample of the application. In addition, with the proliferation of web servers and browser
technologies, more and more developers are choosing the «software as a service» distribution model, where

168

ISSN 2706-5847 Ne 1.(91) 2023

applications are provided as a service over the Internet. The «software as a service» (SaaS) distribution model
opens up a wide range of opportunities for developers and users and has the following advantages: reduced costs,
flexibility and scalability, constant updates and support, and availability. Developers of software distributed under
the SaaS model must take care to support the work of several separate customers. The property of software to serve
several separate customers, the so-called tenants, by transparently allocating available resources is called
multitenancy [9].

Let’s consider work with multitenancy in a web application. The code of any repository must know the ID of
the current tenant. On the other hand, since data and business logic are isolated between tenants, the business logic
layer may not depend on the tenant as such, so passing a parameter to this layer is redundant. One solution to the
problem may be to create services in the «request scope» [3], but this method is not effective in terms of resource
usage. Let’s consider the controller code:

@Controller('resource')
export class ResourceController {
constructor(private readonly useCase: DomainLogicUseCase) {

}

@Post()
public async createResource(
@User() user: UserIdentity,
@Body() dto: CreateResourcePayloadDto,
@Tenant() tenant: TenantIdentity,
): Promise<CreateResourceResponseDto> {
const input = dto.toInput();
input.user = user;
input.tenant = tenant;
return await this.useCase.createResource(input);

Then we consider the solution of this problem using AsyncLocalStorage [2]. AsyncLocalStorage allows storing
and transmitting certain data in the context of asynchronous calls. As with traceld, we can create an interceptor [3]
for the HTTP call context and connect it globally or separately for each controller. The Interceptor can operate
with a sample of AsyncLocalStorage and set tenantld in it:

@Injectable()
export class TenantInterceptor implements NestInterceptor {
private logger = new Logger(TenantInterceptor.name);

constructor(
private readonly asyncTenantService: AsyncTenantService,
private tenantService: TenantService,

) 1}

async intercept(
context: ExecutionContext,
next: CallHandler,
): Promise<Observable<any>> {
const host = context.switchToHttp().getRequest().host;
const tenant = await this.tenantService.getByDomain(host);
if (!tenant) {
this.logger.error(Tenant not found for host ${host});
throw new NotFoundException();
}
this.asyncTenantService.setTenantId(tenant.id);
return next.handle();

169

Texniuna inorcenepis

170

Now we can not pass data about the current tenant to the business logic layer. In the infrastructure layer, we
can work with AsyncLocalStorage and get tenantldfrom it:

@Injectable()

export class ContactRepository implements IContactGateway {
constructor(

)

@InjectRepository(ContactSchema)
protected readonly repository: Repository<ContactSchema>,
protected readonly tenantService: AsyncTenantService,

{}

public async getOneById(id: string): Promise<Contact | > {

}

const tenantId = this.tenantService.getTenantId();
const entity = await this.repository.findOne({
where: { id: id, tenant: { id: tenantId } },

})s
return entity ? entity.toEntity() : 5

In this way, we can simplify the interfaces for calling the business logic layer.

Conclusions. As a result of our research, we have considered practical examples of using AsyncLocalStorage
to simplify the development of enterprise web applications in the TypeScript programming language. The module
is useful for practical use in cases where certain information needs to be transferred between layers to different
layers of the application, but such information does not directly affect the operation of business logic.

References:

1.

Llesuenxo P. Peiitunr Mo niporpamyBanust 2022 / P.Illeguenxo, 1. Anoscvruti. — 2022 [Enexkrponnuii pecype]. —
Pexxum noctymy : https://dou.ua/lenta/articles/language-rating-2022.

2. NodeJS documentation [Electronic resource]. — Access mode : https://nodejs.org/en/docs.

3. A Web-based Book Application using MongoDB & Nodejs / Aishna Gupta, Anuska Rakshit, Mansi Raturi and
other // International Research Journal of Engineering and Technology. — 2022. — Vol. 09, Issue 01 [Electronic
resource]. — Access mode : https://www.researchgate.net/publication/357909376.

4. Collaborative Tourism Application / Nidhi Daulat, Mihir Chheda, Mishkat Shaikh and other // International Journal
for Research in Applied Science & Engineering Technology. — 2023. — Vol. 11, Issue Il [Electronic resource]. —
Access mode : https://www.researchgate.net/publication/369668637.

5. Krutika Desai Developing a Social Platform using MERN Stack / Krutika Desai, Dr. Jinan Fiaidhi. — 2022
[Electronic resource]. — Access mode : https://www.researchgate.net/publication/366231687.

6. NestJS documentation [Electronic resource]. — Access mode : https://docs.nestjs.com.

7. Mapmin P. Yucra apxitektypa: MHUCTEUTBO pO3pOOJICHHS mporpaMHoro 3abesnedeHHs / P.Mapmin. — XapkiB :
Panok, 2020. — 368 c.

8. Richardson Chris Microservices patterns / Chris Richardson // Manning. — 2018. — 520 c.

9. Defining Multi-Tenancy: A Systematic Mapping Study on the Academic and the Industrial Perspective / J.Kabbedijk,
C. Bezemer, S. Jansen, A. Zaidman // Journal of Systems and Software 100. — October. — 2014 [EnexrponHuit
pecypc]. — Pexxum noctymy 1o pecypey: https://www.researchgate.net/publication/267455810.

References:

1. Shevchenko, R. and lanovskyi, I. (2022), Reitynh mov prohramuvannia 2022, [Online], available at:
https://dou.ua/lenta/articles/language-rating-2022

2. NodeJS documentation, [Online], available at: https://nodejs.org/en/docs

3. Aishna Gupta, Anuska Rakshit, Mansi Raturi et al. (2022), «A Web-based Book Application using MongoDB &
Nodejs», International Research Journal of Engineering and Technology, Vol. 09, Issue 01, [Online], available at:
https://www.researchgate.net/publication/357909376

4. Nidhi Daulat, Mihir Chheda, Mishkat Shaikh et al. (2023), «Collaborative Tourism Application», International
Journal for Research in Applied Science & Engineering Technology, Vol. 11, Issue Ill, [Online], available at:
https://www.researchgate.net/publication/369668637

5. Krutika, Desai and Dr. Jinan Fiaidhi (2022), Developing a Social Platform using MERN Stack, [Online], available
at: https://www.researchgate.net/publication/366231687

6. NestJS documentation, [Online], available at: https://docs.nestjs.com

7. Martin, R. (2020), Chysta arkhitektura: Mystetstvo rozroblennia prohramnoho zabezpechennia, Ranok, Kharkiv, 368 p.

https://www.researchgate.net/publication/369668637

ISSN 2706-5847 Ne 1.(91) 2023

8. Richardson, Chris (2018), «Microservices patterns», Manning, 520 p.

9. Kabbedijk, J., Bezemer, C., Jansen, S. and Zaidman, A. (2014), «Defining Multi-Tenancy: A Systematic Mapping
Study on the Academic and the Industrial Perspective», Journal of Systems and Software 100, October, [Online],
available at: https://www.researchgate.net/publication/267455810

Ronskyi Sviatoslav Igorovych — post-graduate student of the Zhytomyr Polytechnic State University.
https://orcid.org/0000-0002-5411-4113.

Research interests:

— software architecture;

— information systems and technologies.

Poncebkmii C.1.
HpaxTuyni npukiaaau Buxkopuctanas AsyncLocalStorage B NodeJS kopnopaTuBHHMX Be0aogaTKax

Mogu nporpamysanHs JavaScript Ta TypeScript 3 KO)KHHM pOKOM 301IBIIYIOTH CBOKO JIOJIIO HA PUHKY PO3pPOOKH AONATKIB, y
ToMi uncii, B Oexena pozpodii. Cepenopuine BukoHaHHA NodeJS posmmproe cBiit API ta Hamae Bee Oible MOKIHBOCTER. Y miit
CTaTTi JOCHTI/DKYEThCS MpaKTH4He BUKopHCTaHHsA AsynclLocalStorage B kopriopaTuBHUX BeOmonmarkax Ha miatdopmi Node.js.
AsyncLocalStorage € MOTY)KHUM IHCTpYMEHTOM, SKWi JI03BOJIsiE 30epiraTh Ta IepelaBaTd KOHTEKCTHY iH(OpPMALI0 MK
ACHHXPOHHHMH OIIEPALlisSMH, IO TOJIETTIIy€e PO3POOKY CKIaTHHUX T0AATKIB. CTaTTs pO3MOYNHAETHCS 3 KOPOTKOT'O OTJISLY TOHSTTS
AsyncLocalStorage Ta po3misAAy MOTCHINHHOI apXiTeKTypu ais mnpukiany. Jami posrimsimaeTbes 0a3oBe BHKOPHCTAHHS
AsyncLocalStorage Ta nociukyeMo npakTHyHi crieHapii Bukoprcranus AsyncLocalStorage B KopropaTiBHOMY BeOI0IaTKY, a
camMe — XypHaJIIOBaHHS Ta 1IeHTH(IKAIIII0 TeHAHTa. Y KOXKHOMY CIIeHapil po3rIIiaeThesl IpodIeMaTnka Ta HaJaloThCsl KOHKPETHI
NPUKIaTA KOAY, AKi JEeMOHCTPYIOTh, sIK eeKTUBHO BHKOpucTOBYyBaTH AsyncLocalStorage. HapemTi, cTaTTsi 3aKiHUyeThCs
BHCHOBKAaMH, B SIKUX IIJKPECITIOETHCS BAKIMBICTh BUKOpHCTaHHA AsyncLocalStorage mis mominmieHHs MpOTYKTHBHOCTI Ta
MiATPUIMKH BEUKHX KOPIOpaTHBHHUX BeOmonarkiB Ha Node.js. Ll crarTs craHe KOPHCHHM PecypcoM Ui PO3POOHUKIB, SIKi
0a)xaroTh PO3IIMPHUTH CBOI 3HAHHS IPo BUKopUcTaHHs AsyncLocalStorage Ta BIpoBakyBaTi HOro B CBOT IIPOEKTH.

KunrouoBi ciioBa: xopropaTHBHI 101aTKU; BeOIOIATKY;)KYPHAIIOBaHHS; MyJIbTUTEHaHTHICTB; JavaScript; NodelJS.

The article was sent to the editorial board on 28.04.2023.

171

