Особливості торцевого фрезерування сплавів Ni-Ti з ефектом пам’яті форми

Автор(и)

  • Наталія Олександрівна Балицька Державний університет «Житомирська політехніка», Ukraine

DOI:

https://doi.org/10.26642/ten-2022-2(90)-3-12

Ключові слова:

нітинол; фазовий перехід; аустеніт; мартенсит; режими різання

Анотація

У роботі представлено огляд сучасних наукових досліджень процесу механічного оброблення сплавів Ni-Ti (нітинолів). Ці функціональні матеріали зазнають мартенситних перетворень, які визначають їх особливі фізико‑механічні властивості (ефект пам’яті форми, надпружність, високу демпфуючу здатність та ін.). Описано фізико- та термомеханічні властивості сплавів Ni-Ti з ефектом пам’яті форми, а також явища, які супроводжують процес різання та обумовлюють низьку оброблюваність цих матеріалів. Проведено огляд раціональних інструментальних матеріалів, режимів різання та умов оброблення, які пропонуються сучасними практиками та дослідниками. Проаналізовано результати відомих робіт із визначення сил різання, температур, стійкості інструментів, шорсткості та мікротвердості оброблених поверхонь, глибини зміцненого шару та залишкових напружень. Обговорюються результати експериментальних досліджень процесу торцевого фрезерування нітинолів в умовах сухої, кріогенної обробки та обробки із мінімальним змащуванням. Виявлено недостатність ґрунтовних і масштабних досліджень процесів торцевого фрезерування сплавів Ni-Ti з ефектом пам’яті форми різних марок для призначення умов їх гарантовано ефективного оброблення. Обґрунтована необхідність подальших наукових пошуків перспективних шляхів підвищення ефективності торцевого фрезерування нітинолів із забезпеченням високої якості поверхневого шару виробів.

Посилання

Kaya, E. and Kaya, İ. (2019), «A review on machining of NiTi shape memory alloys: the process and post process perspective», The International Journal of Advanced Manufacturing Technology, No. 100 (7), pp. 2045–2087.

Velmurugan, C., Senthilkumar, V., Dinesh, S. and Arulkirubakaran, D. (2018), «Machining of NiTi-shape memory alloys – A review», Machining Science and Technology, No. 22 (3), pp. 355–401.

Altas, E., Gokkaya, H. and Ozkan, D. (2020), «Investigation of the effects of machining parameters on tool life and surface roughness during the face milling of the NiTi shape memory alloy with uncoated tools», Materials Science, Preprints, doi: 10.20944/preprints202008.0383.v1.

Altas, E., Altin Karatas, M. and Gokkaya, H. (2021), «Surface integrity of NiTi shape memory alloy in milling with cryogenic heat treated cutting tools under different cutting conditions», Journal of Materials Engineering and Performance, No. 30 (12), pp. 9426–9439.

Koval', Ju.M. (2005), «Splavy z efektom pam'jati formy – potuzhnyj klas funkcional'nyh materialiv», Nauka ta innovacii', Vol. 1, No. 2, pp. 80–95.

NPX Medical Joins Nextern, [Online], available at: https://npxmed.com/nitinol-medical-devices/

Weinert, K., Petzoldt, V., Kötter, D. and Buschka, M. (2004), «Drilling of NiTi shape memory alloys», Mater Werkst, No. 35 (5), pp. 338–341.

Weinert, K. and Petzoldt, V. (2004), «Machining of NiTi based shape memory alloys», Materials Science and Engineering, No. A 378 (1), pp.180–184.

Piquard, R., D’Acunto, A., Laheurte, P. and Dudzinski, D. (2014), «Microend milling of NiTi biomedical alloys, burr formation and phase transformation», Precision Engineering, No. 38 (2), pp. 356–364.

Guo, Y., Klink, A., Fu, C. and Snyder, J. (2013), «Machinability and surface integrity of nitinol shapememory alloy», CIRP Annals – Manufacturing Technology, No. 62 (1), pp. 83–86.

Biermann, D., Kahleyss, F. and Surmann, T. (2009), «Micromilling of NiTi shape-memory alloys with ball nose cutters», Materials and Manufacturing Processes, No. 24 (12), pp. 1266–1273.

Kaynak, Y., Karaca, H. and Jawahir, I. (2015), «Cutting speed dependent microstructure and transformation behavior of NiTi alloy in dry and cryogenic machining», Journal of Materials Engineering and Performance, No. 24 (1), pp. 452–460.

Ezugwu, E.O. and Wang, Z.M. (1997), «Titanium alloys and their machinability – a review», Journal of Materials Processing Technology, No. 68 (3), pp. 262–274.

Jianxin, D., Yousheng, L. and Wenlong, S. (2008), «Diffusion wear in dry cutting of Ti–6Al–4V with WC/Co carbide tools», Wear, No. 265 (11), pp. 1776–1783.

Kitagawa, T., Kubo, A. and Maekawa, K. (1997), «Temperature and wear of cutting tools in high-speed machining of Inconel 718 and Ti–6Al–6V–2Sn», Wear, No. 202 (2), pp. 142–148.

Ezugwu, E., Da, Silva, R., Bonney, J. and Machado, A. (2005), «Evaluation of the performance of CBN tools when turning Ti–6Al–4V alloy with high pressure coolant supplies», International Journal of Machine Tools and Manufacture, No. 45 (9), pp. 1009–1014.

Handbook, A. (1989), «ASM International Handbook Committee», ASM International, Electronic, Vol. 16.

Wolfe, G., Petrosky, C. and Quinto, D. (1986), «The role of hard coatings in carbide milling tools», Journal of Vacuum Science and Technology, No. 4A (6), pp. 2747–2754.

Ezugwu, E.O., Wang, Z.M. and Okeke, C.I. (1999), «Tool life and surface integrity when machining Inconel 718 with PVD- and CVDcoated tools», Tribology Transactions, No. 42 (2), pp. 353–360.

Xavior, M.A., Manohar, M., Jeyapandiarajan, P. and Madhukar, P.M. (2017), «Tool wear assessment during machining of Inconel 718», Procedia Engineering, No. 174, pp. 1000–1008.

Davoodi, B. and Tazehkandi, H.A. (2016), «Cutting forces and surface roughness in wet machining of Inconel alloy 738 with coated carbide tool», Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, No. 230 (2), pp. 215–226.

Thakur, A. and Gangopadhyay, S. (2016), «Dry machining of nickelbased super alloy as a sustainable alternative using TiN/TiAlN coated tool», Journal of Cleaner Production, No. 129, pp. 256–268.

Bhatt, A., Attia, H., Vargas, R. and Thomson, V. (2010), «Wear mechanisms of WC coated and uncoated tools in finish turning of Inconel 718», Tribology International, No. 43 (5–6), pp. 1113–1121.

Zhang, S., Li, J.F., Deng, J.X. and Li, Y.S. (2008), «Investigation on diffusion wear during high-speed machining Ti-6Al-4V alloy with straight tungsten carbide tools», The International Journal of Advanced Manufacturing Technology, No. 44 (17).

Hayati, F. and Nuri, O. (2020), «Influence of cryogenic treatment on microstructure and mechanical properties of Ti6Al4V alloy», Journal of Materials Engineering and Performance, No. 29 (10), pp. 6974–6984.

Akıncıoğlu, S., Gökkaya, H. and Uygur, İ. (2015), «A review of cryogenic treatment on cutting tools», The International Journal of Advanced Manufacturing Technology, No. 78 (9), pp. 1609–1627.

Ezugwu, E.O., Bonney, J., Fadare, D.A. and Sales, W.F. (2005), «Machining of nickel-base, Inconel 718, alloy with ceramic tools under finishing conditions with various coolant supply pressures», Journal of Materials Processing Technology, No. 162–163, pp. 609–614.

Weinert, K., Petzoldt, V. and Kötte, D. (2004), «Turning and drilling of NiTi shape memory alloys», CIRP Annals, No. 53 (1), pp. 65–68.

Bushlya, V., Zhou, J. and Ståhl, J.-E. (2012), «Effect of cutting conditions on machinability of superalloy Inconel 718 during high speed turning with coated and uncoated PCBN tools», Procedia CIRP, No. 3, pp. 370–375.

Arunachalam, R., Mannan, M. and Spowage, A. (2004), «Residual stress and surface roughness when facing age hardened Inconel 718 with CBN and ceramic cutting tools», International Journal of Machine Tools and Manufacture, No. 44 (9), pp. 879–887.

Dogra, M., Sharma, V.S., Sachdeva, A. et al. (2010), «Tool wear, chip formation and workpiece surface issues in CBN hard turning: a review», International Journal of Precision Engineering and Manufacturing, No. 11 (2), pp. 341–358.

Zareena, A.R., Rahman, M. and Wong, Y. (2005), «Binderless CBN tools, a breakthrough for machining titanium alloys», Journal of Manufacturing Science and Engineering, No. 127 (2), pp. 277–279.

A.K.M., Nurul, Amin, Ahmad, F., Ismail, M.K., Nor, Khairusshima (2007), «Effectiveness of uncoated WC–Co and PCD inserts in end milling of titanium alloy–Ti–6Al–4V», Journal of Materials Processing Technology, No. 192–193, pp. 147–158.

Honghua, S., Peng, L., Yucan, F. and Jiuhua, X. (2012), «Tool life and surface integrity in high-speedmilling of titanium alloy TA15 with PCD/PCBN tools», Chinese Journal of Aeronautics, No. 25 (5), pp. 784–790.

Oosthuizen, G.A., Akdogan, G. and Treurnicht, N. (2011), «The performance of PCD tools in high-speed milling of Ti6Al4V», The International Journal of Advanced Manufacturing Technology, No. 52 (9), pp. 929–935.

Huang, H. (2004), «A study of high-speed milling characteristics of nitinol», Materials and Manufacturing Processes, No. 19 (2), pp. 159–175.

Kaynak, Y., Huang, B., Karaca, H. and Jawahir, I. (2017), «Surface characteristics of machined NiTi shape memory alloy: the effects of cryogenic cooling and preheating conditions», Journal of Materials Engineering and Performance, No. 26 (7), pp. 3597–3606.

Akıncıoglu, S., Gokkaya, H. and Uygur, I. (2016), «The effects of cryogenic-treated carbide tools on tool wear and surface roughness of turning of hastelloy C22 based on Taguchi method», The International Journal of Advanced Manufacturing Technology, No. 82 (1–4), pp. 303–314.

Kaynak, Y., Karaca, H. and Jawahir, I.S. (2011), «Cryogenic machining of NiTi shape memory alloy», In 6th International Conference and Exhibition on Design and Production of Machines and Dies/Mold, pp. 23–26.

Piquard, R., D’Acunto, A., Laheurte, P. and Dudzinski, D. (2014), «Micro-end milling of NiTi biomedical alloys, burr formation and phase transformation», Precision Engineering, No. 38 (2), pp. 356–364.

Список використаної літератури:

Kaya E. A review on machining of NiTi shape memory alloys: the process and post process perspective / E.Kaya, İ.Kaya // The International Journal of Advanced Manufacturing Technology. – 2019. – № 100 (7). – P. 2045–2087.

Machining of NiTi-shape memory alloys – A review / C.Velmurugan, V.Senthilkumar, S.Dinesh, D.Arulkirubakaran // Machining Science and Technology. – 2018. – № 22 (3). – P. 355–401.

Altas E. Investigation of the effects of machining parameters on tool life and surface roughness during the face milling of the NiTi shape memory alloy with uncoated tools / E.Altas, H.Gokkaya, D.Ozkan // Preprints. – 2020. DOI: 10.20944/preprints202008.0383.v1.

Altas E. Surface integrity of NiTi shape memory alloy in milling with cryogenic heat treated cutting tools under different cutting conditions / E.Altas, M. Altin Karatas, H.Gokkaya // Journal of Materials Engineering and Performance. – 2021. – № 30 (12). – P. 9426–9439.

Коваль Ю.М. Сплави з ефектом пам’яті форми – потужний клас функціональних матеріалів / Ю.М. Коваль // Наука та інновації. – 2005. – Т. 1, № 2. – С. 80–95.

NPX Medical Joins Nextern [Electronic resource]. – Access mode : https://npxmed.com/nitinol-medical-devices/.

Drilling of NiTi shape memory alloys / K.Weinert, V.Petzoldt, D.Kötter, M.Buschka // Mater Werkst. – 2004. – № 35 (5). – P. 338–341.

Weinert K. Machining of NiTi based shape memory alloys / K.Weinert, V.Petzoldt // Materials Science and Engineering. – 2004. – № A 378 (1). – P. 180–184.

Microend milling of NiTi biomedical alloys, burr formation and phase transformation / R.Piquard, A.D’Acunto, P.Laheurte, D.Dudzinski // Precision Engineering. – 2014. – № 38 (2). – P. 356–364.

Machinability and surface integrity of nitinol shapememory alloy / Y.Guo, A.Klink, C.Fu, J.Snyder // CIRP Annals. – Manufacturing Technology. – 2013. – № 62 (1). – P. 83–86.

Biermann D. Micromilling of NiTi shape-memory alloys with ball nose cutters / D.Biermann, F.Kahleyss, T.Surmann // Materials and Manufacturing Processes. – 2009. – № 24 (12). – P. 1266–1273.

Kaynak Y. Cutting speed dependent microstructure and transformation behavior of NiTi alloy in dry and cryogenic machining / Y.Kaynak, H.Karaca, I.Jawahir // Journal of Materials Engineering and Performance. – 2015. – № 24 (1). – P. 452–460.

Ezugwu E.O. Titanium alloys and their machinability – a review / E.O. Ezugwu, Z.M. Wang // Journal of Materials Processing Technology. – 1997. – № 68 (3). – P. 262–274.

Jianxin D. Diffusion wear in dry cutting of Ti–6Al–4V with WC/Co carbide tools / D.Jianxin, L.Yousheng, S.Wenlong // Wear. – 2008. – № 265 (11). – P. 1776–1783.

Kitagawa T. Temperature and wear of cutting tools in high-speed machining of Inconel 718 and Ti–6Al–6V–2Sn / T.Kitagawa, A.Kubo, K.Maekawa // Wear. – 1997. – № 202 (2). – P. 142–148.

Evaluation of the performance of CBN tools when turning Ti–6Al–4V alloy with high pressure coolant supplies / E.Ezugwu, R. Silva Da, J.Bonney, A.Machado // International Journal of Machine Tools and Manufacture. – 2005. – № 45 (9). – P. 1009–1014.

Handbook A. ASM International Handbook Committee / A.Handbook // ASM International, Electronic. – 1989. – № 16.

Wolfe G. The role of hard coatings in carbide milling tools / G.Wolfe, C.Petrosky, D.Quinto // Journal of Vacuum Science and Technology. – 1986. – № 4A (6). – P. 2747–2754.

Ezugwu E.O. Tool life and surface integrity when machining Inconel 718 with PVD- and CVDcoated tools / E.O. Ezugwu, Z.M. Wang, C.I. Okeke // Tribology Transactions. – 1999. – № 42 (2). – P. 353–360.

Tool wear assessment during machining of Inconel 718 / M.A. Xavior, M.Manohar, P.Jeyapandiarajan, P.M. Madhukar // Procedia Engineering. – 2017. – № 174. – P. 1000–1008.

Cutting forces and surface roughness in wet machining of Inconel alloy 738 with coated carbide tool / B.Davoodi, H.A. Tazehkandi // Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. – 2016. – № 230 (2). – P. 215–226.

Thakur A. Dry machining of nickelbased super alloy as a sustainable alternative using TiN/TiAlN coated tool / A.Thakur, S.Gangopadhyay // Journal of Cleaner Production. – 2016. – № 129. – P. 256–268.

Wear mechanisms of WC coated and uncoated tools in finish turning of Inconel 718 / A.Bhatt, H.Attia, R.Vargas, V.Thomson // Tribology International. – 2010. – № 43 (5–6). – P. 1113–1121.

Investigation on diffusion wear during high-speed machining Ti-6Al-4V alloy with straight tungsten carbide tools / S.Zhang, J.F. Li, J.X. Deng, Y.S. Li // The International Journal of Advanced Manufacturing Technology. – 2008. – № 44 (17).

Hayati F. Influence of cryogenic treatment on microstructure and mechanical properties of Ti6Al4V alloy / F.Hayati, O.Nuri // Journal of Materials Engineering and Performance. – 2020. – № 29 (10). – P. 6974–6984.

Akıncıoğlu S. A review of cryogenic treatment on cutting tools / S.Akıncıoğlu, H.Gökkaya, İ.Uygur // The International Journal of Advanced Manufacturing Technology. – 2015. – № 78 (9). – P. 1609–1627.

Machining of nickel-base, Inconel 718, alloy with ceramic tools under finishing conditions with various coolant supply pressures / E.O. Ezugwu, J.Bonney, D.A. Fadare, W.F. Sales // Journal of Materials Processing Technology. – 2005. –№ 162–163. – P. 609–614.

Weinert K. Turning and drilling of NiTi shape memory alloys / K.Weinert, V.Petzoldt, D.Kötte // CIRP Annals. – 2004. – № 53 (1). – P. 65–68.

Bushlya V. Effect of cutting conditions on machinability of superalloy Inconel 718 during high speed turning with coated and uncoated PCBN tools / V.Bushlya, J.Zhou, J.-E. Ståhl // Procedia CIRP. – 2012. – № 3. – P. 370–375.

Arunachalam R. Residual stress and surface roughness when facing age hardened Inconel 718 with CBN and ceramic cutting tools / R.Arunachalam, M.Mannan, A.Spowage // International Journal of Machine Tools and Manufacture. – 2004. – № 44 (9). – P. 879–887.

Tool wear, chip formation and workpiece surface issues in CBN hard turning: a review / M.Dogra, V.S. Sharma, A.Sachdeva and other // International Journal of Precision Engineering and Manufacturing. – 2010. – № 11 (2). – P. 341–358.

Zareena A.R. Binderless CBN tools, a breakthrough for machining titanium alloys / A.R. Zareena, M.Rahman, Y.Wong // Journal of Manufacturing Science and Engineering. – 2005. – № 127 (2). – P. 277–279.

Effectiveness of uncoated WC–Co and PCD inserts in end milling of titanium alloy—Ti–6Al–4V / A.K.M. Nurul Amin, Ahmad F. Ismail, M.K. Nor Khairusshima // Journal of Materials Processing Technology. – 2007. – № 192–193. – P. 147–158.

Tool life and surface integrity in high-speedmilling of titanium alloy TA15 with PCD/PCBN tools / S.Honghua, L.Peng, F.Yucan, X.Jiuhua // Chinese Journal of Aeronautics. – 2012. – № 25 (5). – P. 784–790.

Oosthuizen G.A. The performance of PCD tools in high-speed milling of Ti6Al4V / G.A. Oosthuizen, G.Akdogan, N.Treurnicht // The International Journal of Advanced Manufacturing Technology. – 2011. – № 52 (9). – P. 929–935.

Huang H. A study of high-speed milling characteristics of nitinol / H.Huang // Materials and Manufacturing Processes. – 2004. – № 19 (2). – P. 159–175.

Surface characteristics of machined NiTi shape memory alloy: the effects of cryogenic cooling and preheating conditions / Y.Kaynak, B.Huang, H.Karaca, I.Jawahir // Journal of Materials Engineering and Performance. – 2017. – № 26 (7). – P. 3597–3606.

Akıncıoglu S. The effects of cryogenic-treated carbide tools on tool wear and surface roughness of turning of hastelloy C22 based on Taguchi method / S.Akıncıoglu, H.Gokkaya, I.Uygur // The International Journal of Advanced Manufacturing Technology. – 2016. – № 82 (1–4). – P. 303–314.

Kaynak Y. Cryogenic machining of NiTi shape memory alloy / Y.Kaynak, H.Karaca, I.S. Jawahir // In 6th International Conference and Exhibition on Design and Production of Machines and Dies / Mold. – 2011. – P. 23–26.

Micro-end milling of NiTi biomedical alloys, burr formation and phase transformation / R.Piquard, A.D’Acunto, P.Laheurte, D.Dudzinski // Precision Engineering. – 2014. – № 38 (2). – P. 356–364.

##submission.downloads##

Опубліковано

2022-12-19

Як цитувати

Балицька, Н. О. (2022). Особливості торцевого фрезерування сплавів Ni-Ti з ефектом пам’яті форми. Технічна інженерія, (2(90), 3–12. https://doi.org/10.26642/ten-2022-2(90)-3-12

Номер

Розділ

ПРИКЛАДНА МЕХАНІКА