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A precise quaternion-based navigation algorithm for simulating signals  

of accelerometers and gyroscopes with low sample frequencies 
 

Accelerometers and gyroscopes based on MEMS technology are promising for tracing motion in 

medicine, sport activities, human-machine interaction, robotics and many other areas due to the fact 

that they are self-containing and have a range of other advantages. Three orthogonally placed 

accelerometers and gyroscopes are combined into a single module fitted with a controller for 

processing the signals from inertial sensors. However, the same module may be suitable for one 

application and inapplicable for another, since the accuracy of tracking a motion trajectory depends not 

only on the error characteristics of the inertial sensors but also on the trajectory itself. Simulation may 

help decide whether an inertial measurement unit is a reasonable choice for a specific application or 

not. The idea is to allow the user to preset a desirable motion trajectory and error characteristics of the 

inertial sensors specified by their manufacturer. Then software simulates signals of real accelerometers 

and gyroscopes and computes a set of potential trajectories upon these signals. Upon the discrepancies 

between the prescribed and synthesized trajectories one can judge on applicability of the inertial 

sensors with the preset error characteristics for a specific task, without implementing a real device. The 

software should be based on well-known navigation equations, expressed via direction cosine matrices 

or quaternions. However, the equations are only valid for infinitesimal rotation angles. Their usage 

leads to cumulating errors in computation of some trajectories due to the fact that low-cost 

accelerometers and gyroscopes available on the market offer limited sample frequencies. The work 

reveals the problem related to usage of the above-mentioned equations, both analytically and by 

numerical experiments. Examples of trajectories irreproducible at low frequencies are shown. The work 

analyzes the reasons why some trajectories are irreproducible and shows that the reasons can scarcely 

be eliminated in case of rotation matrices. We have proposed amended equations universal for any 

trajectory and any sample frequency. 

Keywords: navigation equation; MEMS accelerometer; MEMS gyroscope; Poisson equation; 

quaternion; signal synthesis; trajectory. 

 

Introduction. Inertial measurement units are widely used in a broad range of applications including human-

machine interaction [1], sport [2], user authentication [3], robotics and telemedicine [4]. Inertial measurement 

units produce inevitably faulty readings [5]. In order to be able to use such erroneous readings different filters 

have been designed. All filters have their drawbacks, thus data fusion and filtering area is still being intensively 

elaborated [6, 7]. The same inertial measurement unit may be sufficient for tracking one kind of motion and 

completely inapplicable for another. Particularly, fast movements are irreproducible if the inertial sensor 

supports low sample frequencies [8, 9]. In order to decide on applicability of a specific inertial measurement unit 

for tracking a specific motion trajectory one can try and see what happens, i.e., take a real hardware module, 

move it, calculate the motion trajectory and evaluate the results by comparison of the real motion and computed 

one. Such comparison might be difficult without additional reference motion capture systems alike Vicon. 

However, this straightforward method is definitely cumbersome, time-consuming and expensive. Simulation 

would help to solve the problem. A software tool which allows prescribing a motion scenario and modelling 

measurement errors will enable the researchers and engineers to predict whether an inertial navigation system 

with the prescribed error characteristics can be used in a specific motion capture application or not. In this way, 

simulation of output signals from accelerometers and gyroscopes is of crucial importance, since it enables the 

researchers and engineers to assess the performance of a navigation system prior to its actual implementation and 

thus save costs and efforts. Moreover, filters are better to be tested on simulated signals and then subjected to 

more complicated tests with real equipment only after their efficacy has been proven on simulated data. 

Related work. The first step that the user of the mentioned software tool is supposed to take is to preset a 

motion trajectory (Bézier curves or B-splines can be used with this purpose), velocities and rotation angles. Then 

the user predefines a set of measurement error characteristics. The latter may be found out in the manual of an 

inertial measurement unit. The tool simulates possible trajectories that one could obtain if the inertial 

measurement unit were used for tracking the trajectory. Taking into account the fact that all inertial sensors 

suffer from stochastic errors, there can be multiple possible outcomes. Finally, the software evaluates how much 

the outcomes deviate from the originally prescribed trajectory. Depending on the level of uncertainty 

demonstrated by the simulation results, the user can judge about applicability of the inertial measurement unit. 

Logically, if there are no measurement errors, the prescribed trajectory should be reproduced exactly. If this 
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requirement is not met, it becomes difficult to single out the influence of each gyroscope or accelerometer error 

characteristic on the discrepancies between the preset and calculated trajectories. 

A triaxial accelerometer measures the acceleration a body experiences due to both non-gravitational and 

gravitational forces: 

gaai  , (1) 

where a  is the so-called true acceleration, i.e., acceleration with respect to the inertial reference system; g  is 

the gravity vector expressed in the inertial reference frame. We assume that this vector is [0 0 g], where g is 

approximately 9,81 m/s2. The vector is written with the minus sign because an accelerometer reacts to the force 

that prevents it from free falling, i.e. the force that balances gravity. Particularly, if the accelerometer lies still on 

a table, it will measure the components of the vector – [0 0 g] expressed in its body frame. If the accelerometer 

moves in a sharp, uneven manner, it will sense both components of acceleration (due to motion and gravity), 

measured with respect to the inertial frame but expressed in its body frame. A triaxial accelerometer is 

comprised of three one-axis accelerometers whose sensitivity axes are mutually orthogonal. The subscript «i» 

means «inertial», the subscript «b» denotes «body». The measurements are expressed in the device body frame. 

If the true acceleration and initial velocity V0 are known, then the velocity of the body can be computed as:  

  dtavtv

t

t



0

0 . (2) 

If the initial position is known, then the whole trajectory can be determined by integration of the velocity:  

         

t

t

dtvzyxtztytx

0

000 . (3) 

Obviously, formulas (2) and (3) can only be applied if the acceleration is expressed in the same frame. The 

most convenient way to keep measurements from the accelerometer aligned is to transform the acceleration from 

the body frame to the inertial frame.  

Presentation of the same (acceleration) vector in different frames can be performed in several ways. Using 

direction cosine matrices, one applies the following formula: 

b
I
bi aCa  ,  (4) 

where ia  is the total acceleration vector in the inertial frame, ba  is the same vector in the accelerometer body 

frame, and I
bC  is the direction cosine matrix that relates the body frame to the inertial frame: 
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The true acceleration then would be: 

gaCa b
I
b  , (6) 

Matrix I
bC  describes 3 rotations, performed one after another around axes z, y and x. Angles of rotations, ψ 

about axis z, θ about axis y and ϕ about axis x are called yaw (heading), pitch and roll (bank), correspondingly 

and collectively referred to as Euler or Tait-Bryan angles. When using the direction cosine matrices, it is worth 

bearing in mind that the order of rotations really matters. For instance, rotations around z, y and x in general do 

not yield the same result as rotations around x, y and z. Moreover, when the pitch is around ±π/2, gimbal lock is 

observed, i.e., one degree of freedom will be lost.  

Matrix I
bC  is orthogonal and the following formula is correct:  

   Tb
I

b
I

I
b CCC 

1
, (7) 

An alternative form of rotation representation is using quaternions. Quaternions are less intuitive than 

direction cosine matrices and much less intuitive than Euler angles. However, they use only four parameters 

instead of nine, in contrast to direction cosine matrices. According to the Euler theorem, three consecutive 

rotations around three different axes can be replaced by a single rotation around a single axis. The latter is 

defined by the eigenvector of the corresponding direction cosine matrix. The single rotation by some angle 

around the single axis is described by a quaternion: 
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where     coscoscos zyx  is the rotation vector directed along the axis of rotation; α, β, 

γ are the angles between the axis of rotation and the coordinate frame, and 

222
zyx  . (9) 

Both direction cosine matrices and quaternions can represent mutual frame orientation as well as rotations. 

Thus, in order to use the readings of an accelerometer, one needs to know the orientation (attitude) of the body 

frame with respect to the inertial frame. Attitude information is commonly provided by a gyroscope. A triaxial 

rate gyroscope measures the components of the angular velocity vector  .zyx    

If the initial orientation of the body frame with respect to the inertial frame is known, then its current 

orientation at any time moment can be computed using the Poisson equation:  

b
I
b

I
b CC 

  , (10) 

where b

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Formula (11) has the following background. The rotation matrix derivative is expressed as 

   
t

tCttC
C

I
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I
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b



 .  (12) 

The rotation matrix  ttC I
b   can be written as a product of the rotation matrix of the previous time 

moment,  tC I
b , and the matrix of small rotation, A. The latter is supposed to be equal to: 
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where Δψ, Δθ, Δϕ are small rotations around axes z, y and x, correspondingly. Matrix A is a simplified form of a 

rotation matrix made under assumption that for infinitesemal rotation angles sinΔψ = Δψ, sinΔθ = Δθ, sinΔϕ = 

= Δϕ, cosΔψ = cosΔθ = cosΔϕ = 1. Division of small angles Δψ, Δθ, Δϕ by Δt yields the components of the 

angular velocity vector. 

A quaternion analog of the Poisson equation is: 

 qq
2

1
 , (14) 

where q is the current quaternion, q  is the derivative, ω is the quaternion  zyx  0 and   denotes 

the quaternion product. 

For small rotation one can use the following formula: 

tqqq kkk  
2

1
1 . (15) 

As in the case of direction cosine matrices, for small rotations 
22
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, thus a 

quaternion of small rotation is determined as: 
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Formulas (1) – (16) are widely covered in the scientific literature [10, 11]. Existing software for simulation 

of signals from inertial sensors [12] relies on them without disclosing subtle details. Mechanisms of direction 

cosine matrices and quaternions are often used interchangeably and implicitly supposed to provide the same 

accuracy.  

If the signals are noise-free and all the initial conditions are set correctly, one expects to restore the 

originally defined trajectory exactly upon the simulated signals from inertial sensors. However, in practice this 

expectation may not be met when the body rotates along more than one axis. Our numerical experiments show 

that: 1) the trajectory itself influences the discrepancies between its original and restored versions; 2) some 

trajectories are almost irreproducible, at least at reasonable sample frequencies; 3) the discrepancies depend on 

the sample frequency: the higher the sample frequency, the better; however, starting with some threshold sample 

frequency its further increase shows no or only insignificant improvement; 4) the extent to which the trajectory 
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will be restored depends on the mathematical background: quaternions generally demonstrate better accuracy 

than direction cosine matrices. 

The aim of the work is to explain the discrepancies between the preset and re-calculated trajectories, 

compensate for them, detect the dependency of the discrepancies on the trajectory itself and the sample 

frequency and form the recommendations on choosing between direction cosine matrices and quaternions. 

Mathematical background, numerical experiments and algorithm description. The above-stated 

observations on discrepancies are illustrated by Figure1–2.  

  

  

  
a)               b) 

 

Fig. 1. The original and restored trajectories: a) a curve 
2tx  , tty 2sin , tz 2 , sampled at 100 Hz; 

both signal simulation and trajectory restoring were performed using direction cosine matrices, with 

simultaneous rotation around all the axes; b) a curve tx sin2 , ty cos3 , 0z , with rotation around all the 

axes; both signal simulation and trajectory restoring were performed using direction cosine matrices;  

the upper y-z plot was obtained at 100 Hz, the lower one – at 800 Hz 
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a)       b) 

 
c)       d) 

 

Fig. 2. The original and restored trajectory ttttttty 25,025,1cos425,0sin835,0025,0 2356  , tx  , 

 tz 2/1  with the following sample frequency and rotation representation method used: a) 100 Hz, direction 

cosine matrices; b) 1000 Hz, direction cosine matrices; c) 100 Hz, quaternions; d) 1000 Hz, quaternions 

 

A choice of a high-degree polynomial may seem a bit far-fetched. Nevertheless, the code should be universal 

and workable for any trajectory the user thinks fit to preset. It is worth bearing in mind that the sample frequency 

of real accelerometers and gyroscopes is limited to several options and usually does not exceed 1000 Hz. For 

instance, the maximum sample frequency of BNO055 sensor used in Yocto-3D-V2 is 100 Hz. There is no point 

in using higher frequencies in simulation, because the model would disagree with the real parameters of the 

sensors. As can be seen from Figure 2, quaternions provide somewhat better accuracy than rotation matrices.  

Upon formulas (1) – (16) one applies the following algorithm for simulation of the output signals of «ideal» 

accelerometers and gyroscopes (Part A): 

1. Prescribe a translational motion scenario. The results of this step are 7 one-dimensional arrays: T, which 

represents the motion time period, X, Y, and Z, which define the x-, y- and z-coordinates of the body at each time 

moment t, and xV , yV , zV  which indicate the motion velocity along the three axes. In the simplest case xV  

velocity can be calculated as   dtxx kk /1  , where ./1 samplefdt   Other velocity vector components may be 

computed in a similar way. The simplest way of setting the x-, y- and z-coordinates of the trajectory is to define 

analytical dependencies  tx ,  ty , and  tz  and perform their time-quantization; 

2. Using xV , yV , zV  calculate xA , yA , zA  which are the acceleration vector components expressed in the 

inertial frame. The acceleration along the x-axis is computed as   dtVVA
kkk xxx /

1



, and the two other 

components are found in a similar way; 

3. Preset a rotational motion scenario. In practice, the heading and velocity vectors correlate. However, for 

simplicity reasons we assume that the body attitude changes in an arbitrary way, regardless the translational 

motion. Obviously, the sample frequency for rotational motion should be the same as for translational one, 

because one needs to know the attitude of the body frame related to the current accelerometer readings; 

4. At each step calculate the attitude of the body frame with respect to the inertial frame; 
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5. Obtain the angular velocity vector; 

5.1. In case if direction cosine matrices are used, the angular velocity vector can be computed as follows. 

First, one needs to define the rotation matrix derivative as: 

dt

CC
C

I
b

I
bI

b
kk


 1 , (17) 

where the old and new rotation matrices, indexed (k + 1) and (k) correspondingly, are obtained using the preset 

values of the Euler angles. Then an angular velocity matrix, orig , is computed: 

  I
b

TI
borig CC

k

 , (18) 

The subscript «orig» is meant to underline that the matrix has been calculated in Part A, during signals 

simulation. Elements  3,2orig ,  3,1orig  and  2,1orig  represent the components x , y , z  of the 

angular velocity vector, respectively; 

5.2. In case if quaternions are used, the angular velocity vector can be calculated as 
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
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dt

q

dt

q

dt

q RSRSRS
zyx

4..3..2.. 222
 , (19) 

where ..RSq  is a quaternion of small rotation: 

 **
1.. / kkkRS qqqq   . (20) 

Quaternions 1kq  and kq  describe the current and previous attitude of the body frame with respect to the 

inertial frame. All the angular velocity vector components are stored in three arrays xG , yG , zG . In this way the 

signals of a triaxial gyroscope are simulated; 

6. Having figured out the current attitude of the body, express the acceleration vector components in the 

body frame. With direction cosine matrices, one writes: 

   Tiziyix

TI
bbzbybx gaaaCaaa

k


1
],,[ . (21) 

In the case of quaternions, one obtains: 

   *
11 ,,,0]0[   kiziyixkbzbybx qgaaaqaaa . (22) 

In this way, the signals of a triaxial accelerometer are simulated.  

In order to restore the original trajectories, defined at Part A. Step 1 one should take the steps (Part B): 

1. Input simulated signals xA , yA , zA , xG , yG , zG , initial velocities 
0xV , 

0yV  and 
0zV , initial coordinates 

0
x , 

0
y  and 

0
z  and initial Euler angles that define the orientation of the body frame with respect to the inertial 

frame; 

2. Calculate the current body attitude using direction cosine matrices: 
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is the matrix composed of the simulated signals of a gyroscope at each step, and this fact is reflected in the 

subscript «restored». Alternatively, quaternions may be used: 
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kk qqq 
*

1 . (26) 

Part A and Part B may rely on different mathematical background. Particularly, signals can be simulated 

using direction cosine matrices in Part A and processed using quaternions in Part B, and vice versa. 

3. Represent the simulated accelerometer signals in the inertial frame and compensate for gravity using 

     gAAACaaa
T

zyx
I
biziyix kkkk

00
1




 (27) 

or 

      gqAAAqaaa kzyxkiziyix kkk
00000 1

*
1   . (28) 

4. Using (2), obtain the velocity vector; 

5. Using (3), obtain the coordinates x, y, z. 
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Our numerical experiments have shown that matrix orig  is never strictly skew-symmetrical. Firstly, it has 

small but still no-zero values on its principal diagonal. Secondly, the absolute values of its off-diagonal values 

differ, and the difference depends on how quickly the body rotates around each axis. For instance, if the body 

moves L degrees around x-axis, N degrees around y-axis and M degrees around z-axis and L<M<N, then the 

difference between  3,1orig and  1,3orig  will be the greatest, followed by (    1,22,1 origorig  ) and 

then (    2,33,2 origorig  ). A triaxial gyroscope provides only three signal values at a time, thus one has no 

choice but to compose a matrix restored  of form (24) using the only three available values. Because matrices 

orig  and restored  differ, so do the trajectories. The greater the difference between orig  and restored , the less 

the restored trajectory resembles the original one. 

Let us deduce analytical expressions for matrix orig  and estimate how the sample frequency influences its 

deflection from being perfectly skew-symmetrical. We denote k , k , k  the yaw, pitch and roll angles 

describing the body attitude at time moment t, 1k , 1k , 1k  – the corresponding angles at time moment 

 dtt  ; kk   1 , kk   1 , kk   1 . The analytical expression for orig  is 
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where I3 is a 3 × 3 identity matrix, I
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Matrix I
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C
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looks similarly, with angles 1k , 1k , 1k  instead, and is omitted for brevity. 

Multiplication of   I
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 yields a new matrix, C, which elements are presented by rather cumbersome 

trigonometrical expressions. Since we are interested in the influence of the sample frequency on matrix orig  

regardless any particular angles k , k , k , 1k , 1k , 1k , we applied trigonometric formulas to introduce 

sines and cosines of  ,  ,   whenever it is possible. Thus, we obtained 
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, (32) 

and  

     dtkkorig /11cossinsincoscos3,3 1    . (33) 

If one assumes 1cos   and 1cos  , then   03,3 orig . However, in practice such an assumption 

causes slight errors whose cumulative effect leads to large discrepancies. Figure 3 shows the differences 

 cos1  and   sin  for α running the values through 0 to 5° (0,0872 rad). As one can see the assumption 

1cos   contributes much greater errors to calculations than the assumption  sin .  
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Fig. 3. Cosines and sines of small angles 

 

Taking into account this fact we replace 1sin k  with 1k  and ksin  with k  and simplify  3,3orig  to 

      dtkkorig /11coscoscos3,3 2   . For instance, for  1,0 ,  1,0  and  30 , 

which is a quite realistic scenario, at the sample frequency 100 Hz,   063,23,3 4  eorig .  

Similar reasoning is valid for  1,1orig  and  2,2orig . It explains why one observes perfect coincidence of 

trajectories in x-y planes when there are no rotations around axes x and y and angles ϕ and θ are equal to 0.  

Thus, formulas (13), (16), (24) and (25) can be applied for infinitesimal rotations, but this is not the case 

with accelerometers and gyroscopes whose signals can be sampled with a limited frequency. 

Since matrix representation of orig  contains angles k , k , k , 1k , 1k , 1k  even after 

simplification and, moreover, direction cosine matrices are rather redundant, compensation for errors may 

become extremely difficult if not impossible. On the contrary, quaternions provide much less complicated 

dependencies between angles of rotations and thus are more convenient to deal with. Taking into account the 

demonstrated effect of misapplied assumptions 1cos  ,  sin , we suggest the following corrections for 

quaternions of small rotations both in Parts A and B of the signal simulation algorithm: 

1. Calculate the quaternion defined by formula (20), at each Part A. Step 5.2; 

2. In Part A, compute  1arccos2 q . If Φ = 0, then apply the classic textbook formula (19) for simulation 

of the angular velocity vector. Otherwise amend the formulas as follows: 

 

dt

q RS
x

2
sin

2..




 ;

 

dt

q RS
y

2
sin

3..




 ;

 

dt

q RS
z

2
sin

4..




 ; 

(34) 

3. In Part B, compose the quaternion upon the angular velocity vector components as follows. Compute 

222
zyx GGGdt  . (35) 

If Φ = 0, then apply the classic textbook formula (25). Otherwise compose the following quaternion: 


























dt
G

dt
G

dt
Gq zyx

2
sin

2
sin

2
sin

2
cos . (36) 

The proposed corrections allowed us to restore any trajectory exactly as it has been set by the user. The 

modified formulas (19), (34), (25) and (36) have been intensively verified on the same set of trajectories, which 

had been used for studying the discrepancies between the trajectories built during simulation. 

Conclusions. We have considered the problem of using direction cosine matrices and quaternions for 

simulation of signals from triaxial accelerometers and gyroscopes. Upon the analytical reasoning corroborated 

by numerical experiments, we can conclude that: 1) sample frequencies supported by real accelerometers and 

gyroscopes (up to 1000 Hz) are not sufficient to consider rotation angles infinitesimal, and for this reason classic 

navigation equations widely proposed in the scientific literature provide principally erroneous results, which has 

been demonstrated on analytical expressions for items of the direction cosine matrices; 2) the direction cosine 

matrices become non-skew-symmetrical, however this effect is difficult to take into account and compensate for 

because the underlying expressions contain Euler angles that change from step to step; 3) in contrast to the 

direction cosine matrices, quaternions of small rotation can be easily corrected; the correction to the navigation 

equations we have proposed allows us to eliminate completely any discrepancies between the originally 

simulated trajectory and the trajectory restored from simulated signals of accelerometers and gyroscopes. 
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